/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // // cg_predict.c -- this file generates cg.predictedPlayerState by either // interpolating between snapshots from the server or locally predicting // ahead the client's movement. // It also handles local physics interaction, like fragments bouncing off walls #include "cg_local.h" static pmove_t cg_pmove; static int cg_numSolidEntities; static centity_t *cg_solidEntities[MAX_ENTITIES_IN_SNAPSHOT]; static int cg_numTriggerEntities; static centity_t *cg_triggerEntities[MAX_ENTITIES_IN_SNAPSHOT]; /* ==================== CG_BuildSolidList When a new cg.snap has been set, this function builds a sublist of the entities that are actually solid, to make for more efficient collision detection ==================== */ void CG_BuildSolidList( void ) { int i; centity_t *cent; snapshot_t *snap; entityState_t *ent; cg_numSolidEntities = 0; cg_numTriggerEntities = 0; if ( cg.nextSnap && !cg.nextFrameTeleport && !cg.thisFrameTeleport ) { snap = cg.nextSnap; } else { snap = cg.snap; } for ( i = 0 ; i < snap->numEntities ; i++ ) { cent = &cg_entities[ snap->entities[ i ].number ]; ent = ¢->currentState; if ( ent->eType == ET_ITEM || ent->eType == ET_PUSH_TRIGGER || ent->eType == ET_TELEPORT_TRIGGER ) { cg_triggerEntities[cg_numTriggerEntities] = cent; cg_numTriggerEntities++; continue; } if ( cent->nextState.solid ) { cg_solidEntities[cg_numSolidEntities] = cent; cg_numSolidEntities++; continue; } } } /* ==================== CG_ClipMoveToEntities ==================== */ static void CG_ClipMoveToEntities ( const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int skipNumber, int mask, trace_t *tr ) { int i, x, zd, zu; trace_t trace; entityState_t *ent; clipHandle_t cmodel; vec3_t bmins, bmaxs; vec3_t origin, angles; centity_t *cent; for ( i = 0 ; i < cg_numSolidEntities ; i++ ) { cent = cg_solidEntities[ i ]; ent = ¢->currentState; if ( ent->number == skipNumber ) { continue; } if ( ent->solid == SOLID_BMODEL ) { // special value for bmodel cmodel = trap_CM_InlineModel( ent->modelindex ); VectorCopy( cent->lerpAngles, angles ); BG_EvaluateTrajectory( ¢->currentState.pos, cg.physicsTime, origin ); } else { // encoded bbox x = (ent->solid & 255); zd = ((ent->solid>>8) & 255); zu = ((ent->solid>>16) & 255) - 32; bmins[0] = bmins[1] = -x; bmaxs[0] = bmaxs[1] = x; bmins[2] = -zd; bmaxs[2] = zu; cmodel = trap_CM_TempBoxModel( bmins, bmaxs ); VectorCopy( vec3_origin, angles ); VectorCopy( cent->lerpOrigin, origin ); } trap_CM_TransformedBoxTrace ( &trace, start, end, mins, maxs, cmodel, mask, origin, angles); if (trace.allsolid || trace.fraction < tr->fraction) { trace.entityNum = ent->number; *tr = trace; } else if (trace.startsolid) { tr->startsolid = qtrue; } if ( tr->allsolid ) { return; } } } /* ================ CG_Trace ================ */ void CG_Trace( trace_t *result, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int skipNumber, int mask ) { trace_t t; trap_CM_BoxTrace ( &t, start, end, mins, maxs, 0, mask); t.entityNum = t.fraction != 1.0 ? ENTITYNUM_WORLD : ENTITYNUM_NONE; // check all other solid models CG_ClipMoveToEntities (start, mins, maxs, end, skipNumber, mask, &t); *result = t; } /* ================ CG_PointContents ================ */ int CG_PointContents( const vec3_t point, int passEntityNum ) { int i; entityState_t *ent; centity_t *cent; clipHandle_t cmodel; int contents; contents = trap_CM_PointContents (point, 0); for ( i = 0 ; i < cg_numSolidEntities ; i++ ) { cent = cg_solidEntities[ i ]; ent = ¢->currentState; if ( ent->number == passEntityNum ) { continue; } if (ent->solid != SOLID_BMODEL) { // special value for bmodel continue; } cmodel = trap_CM_InlineModel( ent->modelindex ); if ( !cmodel ) { continue; } contents |= trap_CM_TransformedPointContents( point, cmodel, cent->lerpOrigin, cent->lerpAngles ); } return contents; } /* ======================== CG_InterpolatePlayerState Generates cg.predictedPlayerState by interpolating between cg.snap->player_state and cg.nextFrame->player_state ======================== */ static void CG_InterpolatePlayerState( qboolean grabAngles ) { float f; int i; playerState_t *out; snapshot_t *prev, *next; out = &cg.predictedPlayerState; prev = cg.snap; next = cg.nextSnap; *out = cg.snap->ps; // if we are still allowing local input, short circuit the view angles if ( grabAngles ) { usercmd_t cmd; int cmdNum; cmdNum = trap_GetCurrentCmdNumber(); trap_GetUserCmd( cmdNum, &cmd ); PM_UpdateViewAngles( out, &cmd ); } // if the next frame is a teleport, we can't lerp to it if ( cg.nextFrameTeleport ) { return; } if ( !next || next->serverTime <= prev->serverTime ) { return; } f = (float)( cg.time - prev->serverTime ) / ( next->serverTime - prev->serverTime ); i = next->ps.bobCycle; if ( i < prev->ps.bobCycle ) { i += 256; // handle wraparound } out->bobCycle = prev->ps.bobCycle + f * ( i - prev->ps.bobCycle ); for ( i = 0 ; i < 3 ; i++ ) { out->origin[i] = prev->ps.origin[i] + f * (next->ps.origin[i] - prev->ps.origin[i] ); if ( !grabAngles ) { out->viewangles[i] = LerpAngle( prev->ps.viewangles[i], next->ps.viewangles[i], f ); } out->velocity[i] = prev->ps.velocity[i] + f * (next->ps.velocity[i] - prev->ps.velocity[i] ); } } /* =================== CG_TouchItem =================== */ static void CG_TouchItem( centity_t *cent ) { gitem_t *item; //For instantgib qboolean canBePicked; if(cgs.gametype == GT_ELIMINATION || cgs.gametype == GT_LMS) return; //No weapon pickup in elimination //normally we can canBePicked = qtrue; //But in instantgib, weapon arena, and CTF_ELIMINATION we normally can't: if(cgs.nopickup || cgs.gametype == GT_CTF_ELIMINATION) canBePicked = qfalse; if ( !cg_predictItems.integer ) { return; } if ( !BG_PlayerTouchesItem( &cg.predictedPlayerState, ¢->currentState, cg.time ) ) { return; } // never pick an item up twice in a prediction if ( cent->miscTime == cg.time ) { return; } if ( !BG_CanItemBeGrabbed( cgs.gametype, ¢->currentState, &cg.predictedPlayerState ) ) { return; // can't hold it } item = &bg_itemlist[ cent->currentState.modelindex ]; // Special case for flags. // We don't predict touching our own flag #if 1 //MISSIONPACK if( cgs.gametype == GT_1FCTF ) { if( item->giTag != PW_NEUTRALFLAG ) { return; } } if( cgs.gametype == GT_CTF || cgs.gametype == GT_CTF_ELIMINATION || cgs.gametype == GT_HARVESTER ) { #else if( cgs.gametype == GT_CTF || cgs.gametype == GT_CTF_ELIMINATION ) { #endif if (cg.predictedPlayerState.persistant[PERS_TEAM] == TEAM_RED && item->giTag == PW_REDFLAG) return; if (cg.predictedPlayerState.persistant[PERS_TEAM] == TEAM_BLUE && item->giTag == PW_BLUEFLAG) return; //Even in instantgib, we can predict our enemy flag if (cg.predictedPlayerState.persistant[PERS_TEAM] == TEAM_RED && item->giTag == PW_BLUEFLAG && (!(cgs.elimflags&EF_ONEWAY) || cgs.attackingTeam == TEAM_RED)) canBePicked = qtrue; if (cg.predictedPlayerState.persistant[PERS_TEAM] == TEAM_BLUE && item->giTag == PW_REDFLAG && (!(cgs.elimflags&EF_ONEWAY) || cgs.attackingTeam == TEAM_BLUE)) canBePicked = qtrue; if (item->giTag == WP_RAILGUN) canBePicked = qfalse; if (item->giTag == WP_PLASMAGUN) canBePicked = qfalse; } //Currently we don't predict anything in Double Domination because it looks like we take a flag if( cgs.gametype == GT_DOUBLE_D ) { if(cgs.redflag == TEAM_NONE) return; //Can never pick if just one flag is NONE (because then the other is too) if(item->giTag == PW_REDFLAG){ //at point A if(cgs.redflag != cg.predictedPlayerState.persistant[PERS_TEAM]) //not already taken trap_S_StartLocalSound( cgs.media.hitSound , CHAN_ANNOUNCER ); return; } if(item->giTag == PW_BLUEFLAG){ //at point B if(cgs.blueflag != cg.predictedPlayerState.persistant[PERS_TEAM]) //already taken trap_S_StartLocalSound( cgs.media.hitSound , CHAN_ANNOUNCER ); return; } } // grab it if(canBePicked) { BG_AddPredictableEventToPlayerstate( EV_ITEM_PICKUP, cent->currentState.modelindex , &cg.predictedPlayerState); // remove it from the frame so it won't be drawn cent->currentState.eFlags |= EF_NODRAW; // don't touch it again this prediction cent->miscTime = cg.time; // if its a weapon, give them some predicted ammo so the autoswitch will work if ( item->giType == IT_WEAPON ) { cg.predictedPlayerState.stats[ STAT_WEAPONS ] |= 1 << item->giTag; if ( !cg.predictedPlayerState.ammo[ item->giTag ] ) { cg.predictedPlayerState.ammo[ item->giTag ] = 1; } } } } /* ========================= CG_TouchTriggerPrediction Predict push triggers and items ========================= */ static void CG_TouchTriggerPrediction( void ) { int i; trace_t trace; entityState_t *ent; clipHandle_t cmodel; centity_t *cent; qboolean spectator; // dead clients don't activate triggers if ( cg.predictedPlayerState.stats[STAT_HEALTH] <= 0 ) { return; } spectator = ( cg.predictedPlayerState.pm_type == PM_SPECTATOR ); if ( cg.predictedPlayerState.pm_type != PM_NORMAL && !spectator ) { return; } for ( i = 0 ; i < cg_numTriggerEntities ; i++ ) { cent = cg_triggerEntities[ i ]; ent = ¢->currentState; if ( ent->eType == ET_ITEM && !spectator ) { CG_TouchItem( cent ); continue; } if ( ent->solid != SOLID_BMODEL ) { continue; } cmodel = trap_CM_InlineModel( ent->modelindex ); if ( !cmodel ) { continue; } trap_CM_BoxTrace( &trace, cg.predictedPlayerState.origin, cg.predictedPlayerState.origin, cg_pmove.mins, cg_pmove.maxs, cmodel, -1 ); if ( !trace.startsolid ) { continue; } if ( ent->eType == ET_TELEPORT_TRIGGER ) { cg.hyperspace = qtrue; } else if ( ent->eType == ET_PUSH_TRIGGER ) { BG_TouchJumpPad( &cg.predictedPlayerState, ent ); } } // if we didn't touch a jump pad this pmove frame if ( cg.predictedPlayerState.jumppad_frame != cg.predictedPlayerState.pmove_framecount ) { cg.predictedPlayerState.jumppad_frame = 0; cg.predictedPlayerState.jumppad_ent = 0; } } //unlagged - optimized prediction #define ABS(x) ((x) < 0 ? (-(x)) : (x)) static int IsUnacceptableError( playerState_t *ps, playerState_t *pps ) { vec3_t delta; int i; if ( pps->pm_type != ps->pm_type || pps->pm_flags != ps->pm_flags || pps->pm_time != ps->pm_time ) { return 1; } VectorSubtract( pps->origin, ps->origin, delta ); if ( VectorLengthSquared( delta ) > 0.1f * 0.1f ) { if ( cg_showmiss.integer ) { CG_Printf("delta: %.2f ", VectorLength(delta) ); } return 2; } VectorSubtract( pps->velocity, ps->velocity, delta ); if ( VectorLengthSquared( delta ) > 0.1f * 0.1f ) { if ( cg_showmiss.integer ) { CG_Printf("delta: %.2f ", VectorLength(delta) ); } return 3; } if ( pps->weaponTime != ps->weaponTime || pps->gravity != ps->gravity || pps->speed != ps->speed || pps->delta_angles[0] != ps->delta_angles[0] || pps->delta_angles[1] != ps->delta_angles[1] || pps->delta_angles[2] != ps->delta_angles[2] || pps->groundEntityNum != ps->groundEntityNum ) { return 4; } if ( pps->legsTimer != ps->legsTimer || pps->legsAnim != ps->legsAnim || pps->torsoTimer != ps->torsoTimer || pps->torsoAnim != ps->torsoAnim || pps->movementDir != ps->movementDir ) { return 5; } VectorSubtract( pps->grapplePoint, ps->grapplePoint, delta ); if ( VectorLengthSquared( delta ) > 0.1f * 0.1f ) { return 6; } if ( pps->eFlags != ps->eFlags ) { return 7; } if ( pps->eventSequence != ps->eventSequence ) { return 8; } for ( i = 0; i < MAX_PS_EVENTS; i++ ) { if ( pps->events[i] != ps->events[i] || pps->eventParms[i] != ps->eventParms[i] ) { return 9; } } if ( pps->externalEvent != ps->externalEvent || pps->externalEventParm != ps->externalEventParm || pps->externalEventTime != ps->externalEventTime ) { return 10; } if ( pps->clientNum != ps->clientNum || pps->weapon != ps->weapon || pps->weaponstate != ps->weaponstate ) { return 11; } if ( ABS(pps->viewangles[0] - ps->viewangles[0]) > 1.0f || ABS(pps->viewangles[1] - ps->viewangles[1]) > 1.0f || ABS(pps->viewangles[2] - ps->viewangles[2]) > 1.0f ) { return 12; } if ( pps->viewheight != ps->viewheight ) { return 13; } if ( pps->damageEvent != ps->damageEvent || pps->damageYaw != ps->damageYaw || pps->damagePitch != ps->damagePitch || pps->damageCount != ps->damageCount ) { return 14; } for ( i = 0; i < MAX_STATS; i++ ) { if ( pps->stats[i] != ps->stats[i] ) { return 15; } } for ( i = 0; i < MAX_PERSISTANT; i++ ) { if ( pps->persistant[i] != ps->persistant[i] ) { return 16; } } for ( i = 0; i < MAX_POWERUPS; i++ ) { if ( pps->powerups[i] != ps->powerups[i] ) { return 17; } } for ( i = 0; i < MAX_WEAPONS; i++ ) { if ( pps->ammo[i] != ps->ammo[i] ) { return 18; } } if ( pps->generic1 != ps->generic1 || pps->loopSound != ps->loopSound || pps->jumppad_ent != ps->jumppad_ent ) { return 19; } return 0; } //unlagged - optimized prediction /* ================= CG_PredictPlayerState Generates cg.predictedPlayerState for the current cg.time cg.predictedPlayerState is guaranteed to be valid after exiting. For demo playback, this will be an interpolation between two valid playerState_t. For normal gameplay, it will be the result of predicted usercmd_t on top of the most recent playerState_t received from the server. Each new snapshot will usually have one or more new usercmd over the last, but we simulate all unacknowledged commands each time, not just the new ones. This means that on an internet connection, quite a few pmoves may be issued each frame. OPTIMIZE: don't re-simulate unless the newly arrived snapshot playerState_t differs from the predicted one. Would require saving all intermediate playerState_t during prediction. We detect prediction errors and allow them to be decayed off over several frames to ease the jerk. ================= */ void CG_PredictPlayerState( void ) { int cmdNum, current; playerState_t oldPlayerState; qboolean moved; usercmd_t oldestCmd; usercmd_t latestCmd; //unlagged - optimized prediction int stateIndex = 0, predictCmd = 0; //Sago: added initializing int numPredicted = 0, numPlayedBack = 0; // debug code //unlagged - optimized prediction cg.hyperspace = qfalse; // will be set if touching a trigger_teleport // if this is the first frame we must guarantee // predictedPlayerState is valid even if there is some // other error condition if ( !cg.validPPS ) { cg.validPPS = qtrue; cg.predictedPlayerState = cg.snap->ps; } // demo playback just copies the moves if ( cg.demoPlayback || (cg.snap->ps.pm_flags & PMF_FOLLOW) ) { CG_InterpolatePlayerState( qfalse ); return; } // non-predicting local movement will grab the latest angles if ( cg_nopredict.integer || cg_synchronousClients.integer ) { CG_InterpolatePlayerState( qtrue ); return; } // prepare for pmove cg_pmove.ps = &cg.predictedPlayerState; cg_pmove.trace = CG_Trace; cg_pmove.pointcontents = CG_PointContents; if ( cg_pmove.ps->pm_type == PM_DEAD ) { cg_pmove.tracemask = MASK_PLAYERSOLID & ~CONTENTS_BODY; } else { cg_pmove.tracemask = MASK_PLAYERSOLID; } if ( cg.snap->ps.persistant[PERS_TEAM] == TEAM_SPECTATOR ) { cg_pmove.tracemask &= ~CONTENTS_BODY; // spectators can fly through bodies } cg_pmove.noFootsteps = ( cgs.dmflags & DF_NO_FOOTSTEPS ) > 0; // save the state before the pmove so we can detect transitions oldPlayerState = cg.predictedPlayerState; current = trap_GetCurrentCmdNumber(); // if we don't have the commands right after the snapshot, we // can't accurately predict a current position, so just freeze at // the last good position we had cmdNum = current - CMD_BACKUP + 1; trap_GetUserCmd( cmdNum, &oldestCmd ); if ( oldestCmd.serverTime > cg.snap->ps.commandTime && oldestCmd.serverTime < cg.time ) { // special check for map_restart if ( cg_showmiss.integer ) { CG_Printf ("exceeded PACKET_BACKUP on commands\n"); } return; } // get the latest command so we can know which commands are from previous map_restarts trap_GetUserCmd( current, &latestCmd ); // get the most recent information we have, even if // the server time is beyond our current cg.time, // because predicted player positions are going to // be ahead of everything else anyway if ( cg.nextSnap && !cg.nextFrameTeleport && !cg.thisFrameTeleport ) { cg.predictedPlayerState = cg.nextSnap->ps; cg.physicsTime = cg.nextSnap->serverTime; } else { cg.predictedPlayerState = cg.snap->ps; cg.physicsTime = cg.snap->serverTime; } if ( pmove_msec.integer < 8 ) { trap_Cvar_Set("pmove_msec", "8"); } else if (pmove_msec.integer > 33) { trap_Cvar_Set("pmove_msec", "33"); } cg_pmove.pmove_fixed = pmove_fixed.integer;// | cg_pmove_fixed.integer; cg_pmove.pmove_msec = pmove_msec.integer; cg_pmove.pmove_float = pmove_float.integer; cg_pmove.pmove_flags = cgs.dmflags; //unlagged - optimized prediction // Like the comments described above, a player's state is entirely // re-predicted from the last valid snapshot every client frame, which // can be really, really, really slow. Every old command has to be // run again. For every client frame that is *not* directly after a // snapshot, this is unnecessary, since we have no new information. // For those, we'll play back the predictions from the last frame and // predict only the newest commands. Essentially, we'll be doing // an incremental predict instead of a full predict. // // If we have a new snapshot, we can compare its player state's command // time to the command times in the queue to find a match. If we find // a matching state, and the predicted version has not deviated, we can // use the predicted state as a base - and also do an incremental predict. // // With this method, we get incremental predicts on every client frame // except a frame following a new snapshot in which there was a prediction // error. This yeilds anywhere from a 15% to 40% performance increase, // depending on how much of a bottleneck the CPU is. if ( cg_optimizePrediction.integer ) { if ( cg.nextFrameTeleport || cg.thisFrameTeleport ) { // do a full predict cg.lastPredictedCommand = 0; cg.stateTail = cg.stateHead; predictCmd = current - CMD_BACKUP + 1; } // cg.physicsTime is the current snapshot's serverTime // if it's the same as the last one else if ( cg.physicsTime == cg.lastServerTime ) { // we have no new information, so do an incremental predict predictCmd = cg.lastPredictedCommand + 1; } else { // we have a new snapshot int i; qboolean error = qtrue; // loop through the saved states queue for ( i = cg.stateHead; i != cg.stateTail; i = (i + 1) % NUM_SAVED_STATES ) { // if we find a predicted state whose commandTime matches the snapshot player state's commandTime if ( cg.savedPmoveStates[i].commandTime == cg.predictedPlayerState.commandTime ) { // make sure the state differences are acceptable int errorcode = IsUnacceptableError( &cg.predictedPlayerState, &cg.savedPmoveStates[i] ); // too much change? if ( errorcode ) { if ( cg_showmiss.integer ) { CG_Printf("errorcode %d at %d\n", errorcode, cg.time); } // yeah, so do a full predict break; } // this one is almost exact, so we'll copy it in as the starting point *cg_pmove.ps = cg.savedPmoveStates[i]; // advance the head cg.stateHead = (i + 1) % NUM_SAVED_STATES; // set the next command to predict predictCmd = cg.lastPredictedCommand + 1; // a saved state matched, so flag it error = qfalse; break; } } // if no saved states matched if ( error ) { // do a full predict cg.lastPredictedCommand = 0; cg.stateTail = cg.stateHead; predictCmd = current - CMD_BACKUP + 1; } } // keep track of the server time of the last snapshot so we // know when we're starting from a new one in future calls cg.lastServerTime = cg.physicsTime; stateIndex = cg.stateHead; } //unlagged - optimized prediction // run cmds moved = qfalse; for ( cmdNum = current - CMD_BACKUP + 1 ; cmdNum <= current ; cmdNum++ ) { // get the command trap_GetUserCmd( cmdNum, &cg_pmove.cmd ); if ( cg_pmove.pmove_fixed ) { PM_UpdateViewAngles( cg_pmove.ps, &cg_pmove.cmd ); } // don't do anything if the time is before the snapshot player time if ( cg_pmove.cmd.serverTime <= cg.predictedPlayerState.commandTime ) { continue; } // don't do anything if the command was from a previous map_restart if ( cg_pmove.cmd.serverTime > latestCmd.serverTime ) { continue; } // check for a prediction error from last frame // on a lan, this will often be the exact value // from the snapshot, but on a wan we will have // to predict several commands to get to the point // we want to compare if ( cg.predictedPlayerState.commandTime == oldPlayerState.commandTime ) { vec3_t delta; float len; if ( cg.thisFrameTeleport ) { // a teleport will not cause an error decay VectorClear( cg.predictedError ); if ( cg_showmiss.integer ) { CG_Printf( "PredictionTeleport\n" ); } cg.thisFrameTeleport = qfalse; } else { vec3_t adjusted; CG_AdjustPositionForMover( cg.predictedPlayerState.origin, cg.predictedPlayerState.groundEntityNum, cg.physicsTime, cg.oldTime, adjusted ); if ( cg_showmiss.integer ) { if (!VectorCompare( oldPlayerState.origin, adjusted )) { CG_Printf("prediction error\n"); } } VectorSubtract( oldPlayerState.origin, adjusted, delta ); len = VectorLength( delta ); if ( len > 0.1 ) { if ( cg_showmiss.integer ) { CG_Printf("Prediction miss: %f\n", len); } if ( cg_errorDecay.integer ) { int t; float f; t = cg.time - cg.predictedErrorTime; f = ( cg_errorDecay.value - t ) / cg_errorDecay.value; if ( f < 0 ) { f = 0; } if ( f > 0 && cg_showmiss.integer ) { CG_Printf("Double prediction decay: %f\n", f); } VectorScale( cg.predictedError, f, cg.predictedError ); } else { VectorClear( cg.predictedError ); } VectorAdd( delta, cg.predictedError, cg.predictedError ); cg.predictedErrorTime = cg.oldTime; } } } // don't predict gauntlet firing, which is only supposed to happen // when it actually inflicts damage cg_pmove.gauntletHit = qfalse; if ( cg_pmove.pmove_fixed ) { cg_pmove.cmd.serverTime = ((cg_pmove.cmd.serverTime + pmove_msec.integer-1) / pmove_msec.integer) * pmove_msec.integer; } //unlagged - optimized prediction if ( cg_optimizePrediction.integer ) { // if we need to predict this command, or we've run out of space in the saved states queue if ( cmdNum >= predictCmd || (stateIndex + 1) % NUM_SAVED_STATES == cg.stateHead ) { // run the Pmove Pmove (&cg_pmove); numPredicted++; // debug code // record the last predicted command cg.lastPredictedCommand = cmdNum; // if we haven't run out of space in the saved states queue if ( (stateIndex + 1) % NUM_SAVED_STATES != cg.stateHead ) { // save the state for the false case (of cmdNum >= predictCmd) // in later calls to this function cg.savedPmoveStates[stateIndex] = *cg_pmove.ps; stateIndex = (stateIndex + 1) % NUM_SAVED_STATES; cg.stateTail = stateIndex; } } else { numPlayedBack++; // debug code if ( cg_showmiss.integer && cg.savedPmoveStates[stateIndex].commandTime != cg_pmove.cmd.serverTime) { // this should ONLY happen just after changing the value of pmove_fixed CG_Printf( "saved state miss\n" ); } // play back the command from the saved states *cg_pmove.ps = cg.savedPmoveStates[stateIndex]; // go to the next element in the saved states array stateIndex = (stateIndex + 1) % NUM_SAVED_STATES; } } else { // run the Pmove Pmove (&cg_pmove); numPredicted++; // debug code } //unlagged - optimized prediction moved = qtrue; // add push trigger movement effects CG_TouchTriggerPrediction(); // check for predictable events that changed from previous predictions //CG_CheckChangedPredictableEvents(&cg.predictedPlayerState); } //unlagged - optimized prediction // do a /condump after a few seconds of this //CG_Printf("cg.time: %d, numPredicted: %d, numPlayedBack: %d\n", cg.time, numPredicted, numPlayedBack); // debug code // if everything is working right, numPredicted should be 1 more than 98% // of the time, meaning only ONE predicted move was done in the frame // you should see other values for numPredicted after IsUnacceptableError // returns nonzero, and that's it //unlagged - optimized prediction if ( cg_showmiss.integer > 1 ) { CG_Printf( "[%i : %i] ", cg_pmove.cmd.serverTime, cg.time ); } if ( !moved ) { if ( cg_showmiss.integer ) { CG_Printf( "not moved\n" ); } return; } // adjust for the movement of the groundentity CG_AdjustPositionForMover( cg.predictedPlayerState.origin, cg.predictedPlayerState.groundEntityNum, cg.physicsTime, cg.time, cg.predictedPlayerState.origin ); if ( cg_showmiss.integer ) { if (cg.predictedPlayerState.eventSequence > oldPlayerState.eventSequence + MAX_PS_EVENTS) { CG_Printf("WARNING: dropped event\n"); } } // fire events and other transition triggered things CG_TransitionPlayerState( &cg.predictedPlayerState, &oldPlayerState ); if ( cg_showmiss.integer ) { if (cg.eventSequence > cg.predictedPlayerState.eventSequence) { CG_Printf("WARNING: double event\n"); cg.eventSequence = cg.predictedPlayerState.eventSequence; } } }