|
|
|
|
@@ -60,246 +60,262 @@
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
static const double
|
|
|
|
|
bp[] = {1.0, 1.5,},
|
|
|
|
|
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
|
|
|
|
|
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
|
|
|
|
|
zero = 0.0,
|
|
|
|
|
one = 1.0,
|
|
|
|
|
two = 2.0,
|
|
|
|
|
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
|
|
|
|
hugev = 1.0e300,
|
|
|
|
|
tinyv = 1.0e-300,
|
|
|
|
|
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
|
|
|
|
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
|
|
|
|
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
|
|
|
|
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
|
|
|
|
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
|
|
|
|
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
|
|
|
|
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
|
|
|
|
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
|
|
|
|
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
|
|
|
|
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
|
|
|
|
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
|
|
|
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
|
|
|
|
|
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
|
|
|
|
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
|
|
|
|
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
|
|
|
|
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
|
|
|
|
|
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
|
|
|
|
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
|
|
|
|
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
|
|
|
|
|
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
|
|
|
|
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
|
|
|
|
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
|
|
|
|
bp[] = {
|
|
|
|
|
1.0,
|
|
|
|
|
1.5,
|
|
|
|
|
},
|
|
|
|
|
dp_h[] = {
|
|
|
|
|
0.0,
|
|
|
|
|
5.84962487220764160156e-01,
|
|
|
|
|
}, /* 0x3FE2B803, 0x40000000 */
|
|
|
|
|
dp_l[] = {
|
|
|
|
|
0.0,
|
|
|
|
|
1.35003920212974897128e-08,
|
|
|
|
|
}, /* 0x3E4CFDEB, 0x43CFD006 */
|
|
|
|
|
zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
|
|
|
|
hugev = 1.0e300, tinyv = 1.0e-300,
|
|
|
|
|
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
|
|
|
|
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
|
|
|
|
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
|
|
|
|
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
|
|
|
|
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
|
|
|
|
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
|
|
|
|
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
|
|
|
|
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
|
|
|
|
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
|
|
|
|
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
|
|
|
|
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
|
|
|
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
|
|
|
|
|
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
|
|
|
|
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
|
|
|
|
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
|
|
|
|
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
|
|
|
|
|
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
|
|
|
|
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
|
|
|
|
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
|
|
|
|
|
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
|
|
|
|
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
|
|
|
|
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
|
|
|
|
|
|
|
|
|
double
|
|
|
|
|
nbsd_pow(double x, double y)
|
|
|
|
|
{
|
|
|
|
|
double z,ax,z_h,z_l,p_h,p_l;
|
|
|
|
|
double yy1,t1,t2,r,s,t,u,v,w;
|
|
|
|
|
MwI32 i,j,k,yisint,n;
|
|
|
|
|
MwI32 hx,hy,ix,iy;
|
|
|
|
|
MwU32 lx,ly;
|
|
|
|
|
nbsd_pow(double x, double y) {
|
|
|
|
|
double z, ax, z_h, z_l, p_h, p_l;
|
|
|
|
|
double yy1, t1, t2, r, s, t, u, v, w;
|
|
|
|
|
MwI32 i, j, k, yisint, n;
|
|
|
|
|
MwI32 hx, hy, ix, iy;
|
|
|
|
|
MwU32 lx, ly;
|
|
|
|
|
|
|
|
|
|
EXTRACT_WORDS(hx,lx,x);
|
|
|
|
|
EXTRACT_WORDS(hy,ly,y);
|
|
|
|
|
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
|
|
|
|
|
EXTRACT_WORDS(hx, lx, x);
|
|
|
|
|
EXTRACT_WORDS(hy, ly, y);
|
|
|
|
|
ix = hx & 0x7fffffff;
|
|
|
|
|
iy = hy & 0x7fffffff;
|
|
|
|
|
|
|
|
|
|
/* y==zero: x**0 = 1 */
|
|
|
|
|
if((iy|ly)==0) return one;
|
|
|
|
|
/* y==zero: x**0 = 1 */
|
|
|
|
|
if((iy | ly) == 0) return one;
|
|
|
|
|
|
|
|
|
|
/* x==1: 1**y = 1, even if y is NaN */
|
|
|
|
|
if (hx==0x3ff00000 && lx == 0) return one;
|
|
|
|
|
/* x==1: 1**y = 1, even if y is NaN */
|
|
|
|
|
if(hx == 0x3ff00000 && lx == 0) return one;
|
|
|
|
|
|
|
|
|
|
/* y!=zero: result is NaN if either arg is NaN */
|
|
|
|
|
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
|
|
|
|
|
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
|
|
|
|
|
return (x+0.0)+(y+0.0);
|
|
|
|
|
/* y!=zero: result is NaN if either arg is NaN */
|
|
|
|
|
if(ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) ||
|
|
|
|
|
iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0)))
|
|
|
|
|
return (x + 0.0) + (y + 0.0);
|
|
|
|
|
|
|
|
|
|
/* determine if y is an odd int when x < 0
|
|
|
|
|
* yisint = 0 ... y is not an integer
|
|
|
|
|
* yisint = 1 ... y is an odd int
|
|
|
|
|
* yisint = 2 ... y is an even int
|
|
|
|
|
*/
|
|
|
|
|
yisint = 0;
|
|
|
|
|
if(hx<0) {
|
|
|
|
|
if(iy>=0x43400000) yisint = 2; /* even integer y */
|
|
|
|
|
else if(iy>=0x3ff00000) {
|
|
|
|
|
k = (iy>>20)-0x3ff; /* exponent */
|
|
|
|
|
if(k>20) {
|
|
|
|
|
j = ly>>(52-k);
|
|
|
|
|
if((uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
|
|
|
|
|
} else if(ly==0) {
|
|
|
|
|
j = iy>>(20-k);
|
|
|
|
|
if((j<<(20-k))==iy) yisint = 2-(j&1);
|
|
|
|
|
/* determine if y is an odd int when x < 0
|
|
|
|
|
* yisint = 0 ... y is not an integer
|
|
|
|
|
* yisint = 1 ... y is an odd int
|
|
|
|
|
* yisint = 2 ... y is an even int
|
|
|
|
|
*/
|
|
|
|
|
yisint = 0;
|
|
|
|
|
if(hx < 0) {
|
|
|
|
|
if(iy >= 0x43400000) yisint = 2; /* even integer y */
|
|
|
|
|
else if(iy >= 0x3ff00000) {
|
|
|
|
|
k = (iy >> 20) - 0x3ff; /* exponent */
|
|
|
|
|
if(k > 20) {
|
|
|
|
|
j = ly >> (52 - k);
|
|
|
|
|
if((uint32_t)(j << (52 - k)) == ly) yisint = 2 - (j & 1);
|
|
|
|
|
} else if(ly == 0) {
|
|
|
|
|
j = iy >> (20 - k);
|
|
|
|
|
if((j << (20 - k)) == iy) yisint = 2 - (j & 1);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* special value of y */
|
|
|
|
|
if(ly==0) {
|
|
|
|
|
if (iy==0x7ff00000) { /* y is +-inf */
|
|
|
|
|
if(((ix-0x3ff00000)|lx)==0)
|
|
|
|
|
return one; /* (-1)**+-inf is 1 */
|
|
|
|
|
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
|
|
|
|
|
return (hy>=0)? y: zero;
|
|
|
|
|
else /* (|x|<1)**-,+inf = inf,0 */
|
|
|
|
|
return (hy<0)?-y: zero;
|
|
|
|
|
}
|
|
|
|
|
if(iy==0x3ff00000) { /* y is +-1 */
|
|
|
|
|
if(hy<0) return one/x; else return x;
|
|
|
|
|
}
|
|
|
|
|
if(hy==0x40000000) return x*x; /* y is 2 */
|
|
|
|
|
if(hy==0x3fe00000) { /* y is 0.5 */
|
|
|
|
|
if(hx>=0) /* x >= +0 */
|
|
|
|
|
return sqrt(x);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ax = fabs(x);
|
|
|
|
|
/* special value of x */
|
|
|
|
|
if(lx==0) {
|
|
|
|
|
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
|
|
|
|
|
z = ax; /*x is +-0,+-inf,+-1*/
|
|
|
|
|
if(hy<0) z = one/z; /* z = (1/|x|) */
|
|
|
|
|
if(hx<0) {
|
|
|
|
|
if(((ix-0x3ff00000)|yisint)==0) {
|
|
|
|
|
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
|
|
|
|
|
} else if(yisint==1)
|
|
|
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
|
|
|
|
/* special value of y */
|
|
|
|
|
if(ly == 0) {
|
|
|
|
|
if(iy == 0x7ff00000) { /* y is +-inf */
|
|
|
|
|
if(((ix - 0x3ff00000) | lx) == 0)
|
|
|
|
|
return one; /* (-1)**+-inf is 1 */
|
|
|
|
|
else if(ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
|
|
|
|
|
return (hy >= 0) ? y : zero;
|
|
|
|
|
else /* (|x|<1)**-,+inf = inf,0 */
|
|
|
|
|
return (hy < 0) ? -y : zero;
|
|
|
|
|
}
|
|
|
|
|
if(iy == 0x3ff00000) { /* y is +-1 */
|
|
|
|
|
if(hy < 0) return one / x;
|
|
|
|
|
else
|
|
|
|
|
return x;
|
|
|
|
|
}
|
|
|
|
|
if(hy == 0x40000000) return x * x; /* y is 2 */
|
|
|
|
|
if(hy == 0x3fe00000) { /* y is 0.5 */
|
|
|
|
|
if(hx >= 0) /* x >= +0 */
|
|
|
|
|
return sqrt(x);
|
|
|
|
|
}
|
|
|
|
|
return z;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
|
|
|
|
|
n = (hx>>31)+1;
|
|
|
|
|
but ANSI C says a right shift of a signed negative quantity is
|
|
|
|
|
implementation defined. */
|
|
|
|
|
n = ((MwU32)hx>>31)-1;
|
|
|
|
|
ax = fabs(x);
|
|
|
|
|
/* special value of x */
|
|
|
|
|
if(lx == 0) {
|
|
|
|
|
if(ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) {
|
|
|
|
|
z = ax; /*x is +-0,+-inf,+-1*/
|
|
|
|
|
if(hy < 0) z = one / z; /* z = (1/|x|) */
|
|
|
|
|
if(hx < 0) {
|
|
|
|
|
if(((ix - 0x3ff00000) | yisint) == 0) {
|
|
|
|
|
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
|
|
|
|
|
} else if(yisint == 1)
|
|
|
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
|
|
|
|
}
|
|
|
|
|
return z;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* (x<0)**(non-int) is NaN */
|
|
|
|
|
if((n|yisint)==0) return (x-x)/(x-x);
|
|
|
|
|
/* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
|
|
|
|
|
n = (hx>>31)+1;
|
|
|
|
|
but ANSI C says a right shift of a signed negative quantity is
|
|
|
|
|
implementation defined. */
|
|
|
|
|
n = ((MwU32)hx >> 31) - 1;
|
|
|
|
|
|
|
|
|
|
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
|
|
|
|
if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
|
|
|
|
|
/* (x<0)**(non-int) is NaN */
|
|
|
|
|
if((n | yisint) == 0) return (x - x) / (x - x);
|
|
|
|
|
|
|
|
|
|
/* |y| is hugev */
|
|
|
|
|
if(iy>0x41e00000) { /* if |y| > 2**31 */
|
|
|
|
|
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
|
|
|
|
|
if(ix<=0x3fefffff) return (hy<0)? hugev*hugev:tinyv*tinyv;
|
|
|
|
|
if(ix>=0x3ff00000) return (hy>0)? hugev*hugev:tinyv*tinyv;
|
|
|
|
|
}
|
|
|
|
|
/* over/underflow if x is not close to one */
|
|
|
|
|
if(ix<0x3fefffff) return (hy<0)? s*hugev*hugev:s*tinyv*tinyv;
|
|
|
|
|
if(ix>0x3ff00000) return (hy>0)? s*hugev*hugev:s*tinyv*tinyv;
|
|
|
|
|
/* now |1-x| is tinyv <= 2**-20, suffice to compute
|
|
|
|
|
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
|
|
|
|
t = ax-one; /* t has 20 trailing zeros */
|
|
|
|
|
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
|
|
|
|
|
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
|
|
|
|
|
v = t*ivln2_l-w*ivln2;
|
|
|
|
|
t1 = u+v;
|
|
|
|
|
SET_LOW_WORD(t1,0);
|
|
|
|
|
t2 = v-(t1-u);
|
|
|
|
|
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
|
|
|
|
if((n | (yisint - 1)) == 0) s = -one; /* (-ve)**(odd int) */
|
|
|
|
|
|
|
|
|
|
/* |y| is hugev */
|
|
|
|
|
if(iy > 0x41e00000) { /* if |y| > 2**31 */
|
|
|
|
|
if(iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */
|
|
|
|
|
if(ix <= 0x3fefffff) return (hy < 0) ? hugev * hugev : tinyv * tinyv;
|
|
|
|
|
if(ix >= 0x3ff00000) return (hy > 0) ? hugev * hugev : tinyv * tinyv;
|
|
|
|
|
}
|
|
|
|
|
/* over/underflow if x is not close to one */
|
|
|
|
|
if(ix < 0x3fefffff) return (hy < 0) ? s * hugev * hugev : s * tinyv * tinyv;
|
|
|
|
|
if(ix > 0x3ff00000) return (hy > 0) ? s * hugev * hugev : s * tinyv * tinyv;
|
|
|
|
|
/* now |1-x| is tinyv <= 2**-20, suffice to compute
|
|
|
|
|
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
|
|
|
|
t = ax - one; /* t has 20 trailing zeros */
|
|
|
|
|
w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
|
|
|
|
|
u = ivln2_h * t; /* ivln2_h has 21 sig. bits */
|
|
|
|
|
v = t * ivln2_l - w * ivln2;
|
|
|
|
|
t1 = u + v;
|
|
|
|
|
SET_LOW_WORD(t1, 0);
|
|
|
|
|
t2 = v - (t1 - u);
|
|
|
|
|
} else {
|
|
|
|
|
double ss,s2,s_h,s_l,t_h,t_l;
|
|
|
|
|
n = 0;
|
|
|
|
|
/* take care subnormal number */
|
|
|
|
|
if(ix<0x00100000)
|
|
|
|
|
{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
|
|
|
|
|
n += ((ix)>>20)-0x3ff;
|
|
|
|
|
j = ix&0x000fffff;
|
|
|
|
|
/* determine interval */
|
|
|
|
|
ix = j|0x3ff00000; /* normalize ix */
|
|
|
|
|
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
|
|
|
|
|
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
|
|
|
|
|
else {k=0;n+=1;ix -= 0x00100000;}
|
|
|
|
|
SET_HIGH_WORD(ax,ix);
|
|
|
|
|
double ss, s2, s_h, s_l, t_h, t_l;
|
|
|
|
|
n = 0;
|
|
|
|
|
/* take care subnormal number */
|
|
|
|
|
if(ix < 0x00100000) {
|
|
|
|
|
ax *= two53;
|
|
|
|
|
n -= 53;
|
|
|
|
|
GET_HIGH_WORD(ix, ax);
|
|
|
|
|
}
|
|
|
|
|
n += ((ix) >> 20) - 0x3ff;
|
|
|
|
|
j = ix & 0x000fffff;
|
|
|
|
|
/* determine interval */
|
|
|
|
|
ix = j | 0x3ff00000; /* normalize ix */
|
|
|
|
|
if(j <= 0x3988E) k = 0; /* |x|<sqrt(3/2) */
|
|
|
|
|
else if(j < 0xBB67A)
|
|
|
|
|
k = 1; /* |x|<sqrt(3) */
|
|
|
|
|
else {
|
|
|
|
|
k = 0;
|
|
|
|
|
n += 1;
|
|
|
|
|
ix -= 0x00100000;
|
|
|
|
|
}
|
|
|
|
|
SET_HIGH_WORD(ax, ix);
|
|
|
|
|
|
|
|
|
|
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
|
|
|
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
|
|
|
v = one/(ax+bp[k]);
|
|
|
|
|
ss = u*v;
|
|
|
|
|
s_h = ss;
|
|
|
|
|
SET_LOW_WORD(s_h,0);
|
|
|
|
|
/* t_h=ax+bp[k] High */
|
|
|
|
|
t_h = zero;
|
|
|
|
|
SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
|
|
|
|
|
t_l = ax - (t_h-bp[k]);
|
|
|
|
|
s_l = v*((u-s_h*t_h)-s_h*t_l);
|
|
|
|
|
/* compute log(ax) */
|
|
|
|
|
s2 = ss*ss;
|
|
|
|
|
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
|
|
|
|
|
r += s_l*(s_h+ss);
|
|
|
|
|
s2 = s_h*s_h;
|
|
|
|
|
t_h = 3.0+s2+r;
|
|
|
|
|
SET_LOW_WORD(t_h,0);
|
|
|
|
|
t_l = r-((t_h-3.0)-s2);
|
|
|
|
|
/* u+v = ss*(1+...) */
|
|
|
|
|
u = s_h*t_h;
|
|
|
|
|
v = s_l*t_h+t_l*ss;
|
|
|
|
|
/* 2/(3log2)*(ss+...) */
|
|
|
|
|
p_h = u+v;
|
|
|
|
|
SET_LOW_WORD(p_h,0);
|
|
|
|
|
p_l = v-(p_h-u);
|
|
|
|
|
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
|
|
|
z_l = cp_l*p_h+p_l*cp+dp_l[k];
|
|
|
|
|
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
|
|
|
t = (double)n;
|
|
|
|
|
t1 = (((z_h+z_l)+dp_h[k])+t);
|
|
|
|
|
SET_LOW_WORD(t1,0);
|
|
|
|
|
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
|
|
|
|
|
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
|
|
|
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
|
|
|
v = one / (ax + bp[k]);
|
|
|
|
|
ss = u * v;
|
|
|
|
|
s_h = ss;
|
|
|
|
|
SET_LOW_WORD(s_h, 0);
|
|
|
|
|
/* t_h=ax+bp[k] High */
|
|
|
|
|
t_h = zero;
|
|
|
|
|
SET_HIGH_WORD(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18));
|
|
|
|
|
t_l = ax - (t_h - bp[k]);
|
|
|
|
|
s_l = v * ((u - s_h * t_h) - s_h * t_l);
|
|
|
|
|
/* compute log(ax) */
|
|
|
|
|
s2 = ss * ss;
|
|
|
|
|
r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
|
|
|
|
|
r += s_l * (s_h + ss);
|
|
|
|
|
s2 = s_h * s_h;
|
|
|
|
|
t_h = 3.0 + s2 + r;
|
|
|
|
|
SET_LOW_WORD(t_h, 0);
|
|
|
|
|
t_l = r - ((t_h - 3.0) - s2);
|
|
|
|
|
/* u+v = ss*(1+...) */
|
|
|
|
|
u = s_h * t_h;
|
|
|
|
|
v = s_l * t_h + t_l * ss;
|
|
|
|
|
/* 2/(3log2)*(ss+...) */
|
|
|
|
|
p_h = u + v;
|
|
|
|
|
SET_LOW_WORD(p_h, 0);
|
|
|
|
|
p_l = v - (p_h - u);
|
|
|
|
|
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
|
|
|
z_l = cp_l * p_h + p_l * cp + dp_l[k];
|
|
|
|
|
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
|
|
|
t = (double)n;
|
|
|
|
|
t1 = (((z_h + z_l) + dp_h[k]) + t);
|
|
|
|
|
SET_LOW_WORD(t1, 0);
|
|
|
|
|
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
|
|
|
|
|
yy1 = y;
|
|
|
|
|
SET_LOW_WORD(yy1,0);
|
|
|
|
|
p_l = (y-yy1)*t1+y*t2;
|
|
|
|
|
p_h = yy1*t1;
|
|
|
|
|
z = p_l+p_h;
|
|
|
|
|
EXTRACT_WORDS(j,i,z);
|
|
|
|
|
if (j>=0x40900000) { /* z >= 1024 */
|
|
|
|
|
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
|
|
|
|
|
return s*hugev*hugev; /* overflow */
|
|
|
|
|
else {
|
|
|
|
|
if(p_l+ovt>z-p_h) return s*hugev*hugev; /* overflow */
|
|
|
|
|
}
|
|
|
|
|
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
|
|
|
|
|
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
|
|
|
|
|
return s*tinyv*tinyv; /* underflow */
|
|
|
|
|
else {
|
|
|
|
|
if(p_l<=z-p_h) return s*tinyv*tinyv; /* underflow */
|
|
|
|
|
}
|
|
|
|
|
/* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
|
|
|
|
|
yy1 = y;
|
|
|
|
|
SET_LOW_WORD(yy1, 0);
|
|
|
|
|
p_l = (y - yy1) * t1 + y * t2;
|
|
|
|
|
p_h = yy1 * t1;
|
|
|
|
|
z = p_l + p_h;
|
|
|
|
|
EXTRACT_WORDS(j, i, z);
|
|
|
|
|
if(j >= 0x40900000) { /* z >= 1024 */
|
|
|
|
|
if(((j - 0x40900000) | i) != 0) /* if z > 1024 */
|
|
|
|
|
return s * hugev * hugev; /* overflow */
|
|
|
|
|
else {
|
|
|
|
|
if(p_l + ovt > z - p_h) return s * hugev * hugev; /* overflow */
|
|
|
|
|
}
|
|
|
|
|
} else if((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */
|
|
|
|
|
if(((j - 0xc090cc00) | i) != 0) /* z < -1075 */
|
|
|
|
|
return s * tinyv * tinyv; /* underflow */
|
|
|
|
|
else {
|
|
|
|
|
if(p_l <= z - p_h) return s * tinyv * tinyv; /* underflow */
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
/*
|
|
|
|
|
* compute 2**(p_h+p_l)
|
|
|
|
|
*/
|
|
|
|
|
i = j&0x7fffffff;
|
|
|
|
|
k = (i>>20)-0x3ff;
|
|
|
|
|
/*
|
|
|
|
|
* compute 2**(p_h+p_l)
|
|
|
|
|
*/
|
|
|
|
|
i = j & 0x7fffffff;
|
|
|
|
|
k = (i >> 20) - 0x3ff;
|
|
|
|
|
n = 0;
|
|
|
|
|
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
|
|
|
|
n = j+(0x00100000>>(k+1));
|
|
|
|
|
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
|
|
|
|
|
t = zero;
|
|
|
|
|
SET_HIGH_WORD(t,n&~(0x000fffff>>k));
|
|
|
|
|
n = ((n&0x000fffff)|0x00100000)>>(20-k);
|
|
|
|
|
if(j<0) n = -n;
|
|
|
|
|
p_h -= t;
|
|
|
|
|
if(i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
|
|
|
|
n = j + (0x00100000 >> (k + 1));
|
|
|
|
|
k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
|
|
|
|
|
t = zero;
|
|
|
|
|
SET_HIGH_WORD(t, n & ~(0x000fffff >> k));
|
|
|
|
|
n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
|
|
|
|
|
if(j < 0) n = -n;
|
|
|
|
|
p_h -= t;
|
|
|
|
|
}
|
|
|
|
|
t = p_l+p_h;
|
|
|
|
|
SET_LOW_WORD(t,0);
|
|
|
|
|
u = t*lg2_h;
|
|
|
|
|
v = (p_l-(t-p_h))*lg2+t*lg2_l;
|
|
|
|
|
z = u+v;
|
|
|
|
|
w = v-(z-u);
|
|
|
|
|
t = z*z;
|
|
|
|
|
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
|
|
|
r = (z*t1)/(t1-two)-(w+z*w);
|
|
|
|
|
z = one-(r-z);
|
|
|
|
|
GET_HIGH_WORD(j,z);
|
|
|
|
|
j += (n<<20);
|
|
|
|
|
if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
|
|
|
|
|
else SET_HIGH_WORD(z,j);
|
|
|
|
|
return s*z;
|
|
|
|
|
t = p_l + p_h;
|
|
|
|
|
SET_LOW_WORD(t, 0);
|
|
|
|
|
u = t * lg2_h;
|
|
|
|
|
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
|
|
|
|
|
z = u + v;
|
|
|
|
|
w = v - (z - u);
|
|
|
|
|
t = z * z;
|
|
|
|
|
t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
|
|
|
|
|
r = (z * t1) / (t1 - two) - (w + z * w);
|
|
|
|
|
z = one - (r - z);
|
|
|
|
|
GET_HIGH_WORD(j, z);
|
|
|
|
|
j += (n << 20);
|
|
|
|
|
if((j >> 20) <= 0) z = scalbn(z, n); /* subnormal output */
|
|
|
|
|
else
|
|
|
|
|
SET_HIGH_WORD(z, j);
|
|
|
|
|
return s * z;
|
|
|
|
|
}
|
|
|
|
|
|