mirror of
https://gitea.nishi.boats/pyrite-dev/milsko
synced 2026-01-05 00:50:53 +00:00
add fdlibm
git-svn-id: http://svn2.nishi.boats/svn/milsko/trunk@557 b9cfdab3-6d41-4d17-bbe4-086880011989
This commit is contained in:
96
external/fdlibm/e_acos.c
vendored
Normal file
96
external/fdlibm/e_acos.c
vendored
Normal file
@@ -0,0 +1,96 @@
|
||||
|
||||
/* @(#)e_acos.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_acos(x)
|
||||
* Method :
|
||||
* acos(x) = pi/2 - asin(x)
|
||||
* acos(-x) = pi/2 + asin(x)
|
||||
* For |x|<=0.5
|
||||
* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
|
||||
* For x>0.5
|
||||
* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
|
||||
* = 2asin(sqrt((1-x)/2))
|
||||
* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
|
||||
* = 2f + (2c + 2s*z*R(z))
|
||||
* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
|
||||
* for f so that f+c ~ sqrt(z).
|
||||
* For x<-0.5
|
||||
* acos(x) = pi - 2asin(sqrt((1-|x|)/2))
|
||||
* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
* Function needed: sqrt
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
||||
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
||||
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
||||
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
||||
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
||||
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
||||
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
||||
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
||||
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
||||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
||||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
double __fdlibm_acos(double x) {
|
||||
double z, p, q, r, w, s, c, df;
|
||||
int hx, ix;
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix >= 0x3ff00000) { /* |x| >= 1 */
|
||||
if(((ix - 0x3ff00000) | __LO(x)) == 0) { /* |x|==1 */
|
||||
if(hx > 0) return 0.0; /* acos(1) = 0 */
|
||||
else
|
||||
return pi + 2.0 * pio2_lo; /* acos(-1)= pi */
|
||||
}
|
||||
return (x - x) / (x - x); /* acos(|x|>1) is NaN */
|
||||
}
|
||||
if(ix < 0x3fe00000) { /* |x| < 0.5 */
|
||||
if(ix <= 0x3c600000) return pio2_hi + pio2_lo; /*if|x|<2**-57*/
|
||||
z = x * x;
|
||||
p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
|
||||
q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
|
||||
r = p / q;
|
||||
return pio2_hi - (x - (pio2_lo - x * r));
|
||||
} else if(hx < 0) { /* x < -0.5 */
|
||||
z = (one + x) * 0.5;
|
||||
p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
|
||||
q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
|
||||
s = sqrt(z);
|
||||
r = p / q;
|
||||
w = r * s - pio2_lo;
|
||||
return pi - 2.0 * (s + w);
|
||||
} else { /* x > 0.5 */
|
||||
z = (one - x) * 0.5;
|
||||
s = sqrt(z);
|
||||
df = s;
|
||||
__LO(df) = 0;
|
||||
c = (z - df * df) / (s + df);
|
||||
p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
|
||||
q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
|
||||
r = p / q;
|
||||
w = r * s + c;
|
||||
return 2.0 * (df + w);
|
||||
}
|
||||
}
|
||||
55
external/fdlibm/e_acosh.c
vendored
Normal file
55
external/fdlibm/e_acosh.c
vendored
Normal file
@@ -0,0 +1,55 @@
|
||||
|
||||
/* @(#)e_acosh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* __fdlibm_acosh(x)
|
||||
* Method :
|
||||
* Based on
|
||||
* acosh(x) = log [ x + sqrt(x*x-1) ]
|
||||
* we have
|
||||
* acosh(x) := log(x)+ln2, if x is large; else
|
||||
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
||||
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
||||
*
|
||||
* Special cases:
|
||||
* acosh(x) is NaN with signal if x<1.
|
||||
* acosh(NaN) is NaN without signal.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
|
||||
|
||||
double __fdlibm_acosh(double x) {
|
||||
double t;
|
||||
int hx;
|
||||
hx = __HI(x);
|
||||
if(hx < 0x3ff00000) { /* x < 1 */
|
||||
return (x - x) / (x - x);
|
||||
} else if(hx >= 0x41b00000) { /* x > 2**28 */
|
||||
if(hx >= 0x7ff00000) { /* x is inf of NaN */
|
||||
return x + x;
|
||||
} else
|
||||
return __fdlibm_log(x) + ln2; /* acosh(hugev)=log(2x) */
|
||||
} else if(((hx - 0x3ff00000) | __LO(x)) == 0) {
|
||||
return 0.0; /* acosh(1) = 0 */
|
||||
} else if(hx > 0x40000000) { /* 2**28 > x > 2 */
|
||||
t = x * x;
|
||||
return __fdlibm_log(2.0 * x - one / (x + sqrt(t - one)));
|
||||
} else { /* 1<x<2 */
|
||||
t = x - one;
|
||||
return log1p(t + sqrt(2.0 * t + t * t));
|
||||
}
|
||||
}
|
||||
105
external/fdlibm/e_asin.c
vendored
Normal file
105
external/fdlibm/e_asin.c
vendored
Normal file
@@ -0,0 +1,105 @@
|
||||
|
||||
/* @(#)e_asin.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_asin(x)
|
||||
* Method :
|
||||
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
|
||||
* we approximate asin(x) on [0,0.5] by
|
||||
* asin(x) = x + x*x^2*R(x^2)
|
||||
* where
|
||||
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
||||
* and its remez error is bounded by
|
||||
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
|
||||
*
|
||||
* For x in [0.5,1]
|
||||
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
|
||||
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
|
||||
* then for x>0.98
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
|
||||
* For x<=0.98, let pio4_hi = pio2_hi/2, then
|
||||
* f = hi part of s;
|
||||
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
|
||||
* and
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
|
||||
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
hugev = 1.000e+300,
|
||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
||||
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
||||
/* coefficient for R(x^2) */
|
||||
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
||||
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
||||
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
||||
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
||||
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
||||
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
||||
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
||||
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
||||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
||||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
double __fdlibm_asin(double x) {
|
||||
double t, w, p, q, c, r, s;
|
||||
int hx, ix;
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix >= 0x3ff00000) { /* |x|>= 1 */
|
||||
if(((ix - 0x3ff00000) | __LO(x)) == 0)
|
||||
/* asin(1)=+-pi/2 with inexact */
|
||||
return x * pio2_hi + x * pio2_lo;
|
||||
return (x - x) / (x - x); /* asin(|x|>1) is NaN */
|
||||
} else if(ix < 0x3fe00000) { /* |x|<0.5 */
|
||||
if(ix < 0x3e400000) { /* if |x| < 2**-27 */
|
||||
if(hugev + x > one) return x; /* return x with inexact if x!=0*/
|
||||
} else
|
||||
t = x * x;
|
||||
p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
|
||||
q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
|
||||
w = p / q;
|
||||
return x + x * w;
|
||||
}
|
||||
/* 1> |x|>= 0.5 */
|
||||
w = one - fabs(x);
|
||||
t = w * 0.5;
|
||||
p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
|
||||
q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
|
||||
s = sqrt(t);
|
||||
if(ix >= 0x3FEF3333) { /* if |x| > 0.975 */
|
||||
w = p / q;
|
||||
t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
|
||||
} else {
|
||||
w = s;
|
||||
__LO(w) = 0;
|
||||
c = (t - w * w) / (s + w);
|
||||
r = p / q;
|
||||
p = 2.0 * s * r - (pio2_lo - 2.0 * c);
|
||||
q = pio4_hi - 2.0 * w;
|
||||
t = pio4_hi - (p - q);
|
||||
}
|
||||
if(hx > 0) return t;
|
||||
else
|
||||
return -t;
|
||||
}
|
||||
131
external/fdlibm/e_atan2.c
vendored
Normal file
131
external/fdlibm/e_atan2.c
vendored
Normal file
@@ -0,0 +1,131 @@
|
||||
|
||||
/* @(#)e_atan2.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* __fdlibm_atan2(y,x)
|
||||
* Method :
|
||||
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
|
||||
* 2. Reduce x to positive by (if x and y are unexceptional):
|
||||
* ARG (x+iy) = arctan(y/x) ... if x > 0,
|
||||
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
|
||||
*
|
||||
* Special cases:
|
||||
*
|
||||
* ATAN2((anything), NaN ) is NaN;
|
||||
* ATAN2(NAN , (anything) ) is NaN;
|
||||
* ATAN2(+-0, +(anything but NaN)) is +-0 ;
|
||||
* ATAN2(+-0, -(anything but NaN)) is +-pi ;
|
||||
* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
|
||||
* ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
|
||||
* ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
|
||||
* ATAN2(+-INF,+INF ) is +-pi/4 ;
|
||||
* ATAN2(+-INF,-INF ) is +-3pi/4;
|
||||
* ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
tinyv = 1.0e-300,
|
||||
zero = 0.0,
|
||||
pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
|
||||
pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
|
||||
pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
|
||||
|
||||
double __fdlibm_atan2(double y, double x) {
|
||||
double z;
|
||||
int k, m, hx, hy, ix, iy;
|
||||
unsigned lx, ly;
|
||||
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
lx = __LO(x);
|
||||
hy = __HI(y);
|
||||
iy = hy & 0x7fffffff;
|
||||
ly = __LO(y);
|
||||
if(((ix | ((lx | -lx) >> 31)) > 0x7ff00000) ||
|
||||
((iy | ((ly | -ly) >> 31)) > 0x7ff00000)) /* x or y is NaN */
|
||||
return x + y;
|
||||
if((hx - 0x3ff00000 | lx) == 0) return atan(y); /* x=1.0 */
|
||||
m = ((hy >> 31) & 1) | ((hx >> 30) & 2); /* 2*sign(x)+sign(y) */
|
||||
|
||||
/* when y = 0 */
|
||||
if((iy | ly) == 0) {
|
||||
switch(m) {
|
||||
case 0:
|
||||
case 1:
|
||||
return y; /* atan(+-0,+anything)=+-0 */
|
||||
case 2:
|
||||
return pi + tinyv; /* atan(+0,-anything) = pi */
|
||||
case 3:
|
||||
return -pi - tinyv; /* atan(-0,-anything) =-pi */
|
||||
}
|
||||
}
|
||||
/* when x = 0 */
|
||||
if((ix | lx) == 0) return (hy < 0) ? -pi_o_2 - tinyv : pi_o_2 + tinyv;
|
||||
|
||||
/* when x is INF */
|
||||
if(ix == 0x7ff00000) {
|
||||
if(iy == 0x7ff00000) {
|
||||
switch(m) {
|
||||
case 0:
|
||||
return pi_o_4 + tinyv; /* atan(+INF,+INF) */
|
||||
case 1:
|
||||
return -pi_o_4 - tinyv; /* atan(-INF,+INF) */
|
||||
case 2:
|
||||
return 3.0 * pi_o_4 + tinyv; /*atan(+INF,-INF)*/
|
||||
case 3:
|
||||
return -3.0 * pi_o_4 - tinyv; /*atan(-INF,-INF)*/
|
||||
}
|
||||
} else {
|
||||
switch(m) {
|
||||
case 0:
|
||||
return zero; /* atan(+...,+INF) */
|
||||
case 1:
|
||||
return -zero; /* atan(-...,+INF) */
|
||||
case 2:
|
||||
return pi + tinyv; /* atan(+...,-INF) */
|
||||
case 3:
|
||||
return -pi - tinyv; /* atan(-...,-INF) */
|
||||
}
|
||||
}
|
||||
}
|
||||
/* when y is INF */
|
||||
if(iy == 0x7ff00000) return (hy < 0) ? -pi_o_2 - tinyv : pi_o_2 + tinyv;
|
||||
|
||||
/* compute y/x */
|
||||
k = (iy - ix) >> 20;
|
||||
if(k > 60) z = pi_o_2 + 0.5 * pi_lo; /* |y/x| > 2**60 */
|
||||
else if(hx < 0 && k < -60)
|
||||
z = 0.0; /* |y|/x < -2**60 */
|
||||
else
|
||||
z = atan(fabs(y / x)); /* safe to do y/x */
|
||||
switch(m) {
|
||||
case 0:
|
||||
return z; /* atan(+,+) */
|
||||
case 1:
|
||||
__HI(z) ^= 0x80000000;
|
||||
return z; /* atan(-,+) */
|
||||
case 2:
|
||||
return pi - (z - pi_lo); /* atan(+,-) */
|
||||
default: /* case 3 */
|
||||
return (z - pi_lo) - pi; /* atan(-,-) */
|
||||
}
|
||||
}
|
||||
60
external/fdlibm/e_atanh.c
vendored
Normal file
60
external/fdlibm/e_atanh.c
vendored
Normal file
@@ -0,0 +1,60 @@
|
||||
|
||||
/* @(#)e_atanh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* __fdlibm_atanh(x)
|
||||
* Method :
|
||||
* 1.Reduced x to positive by atanh(-x) = -atanh(x)
|
||||
* 2.For x>=0.5
|
||||
* 1 2x x
|
||||
* atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
|
||||
* 2 1 - x 1 - x
|
||||
*
|
||||
* For x<0.5
|
||||
* atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
|
||||
*
|
||||
* Special cases:
|
||||
* atanh(x) is NaN if |x| > 1 with signal;
|
||||
* atanh(NaN) is that NaN with no signal;
|
||||
* atanh(+-1) is +-INF with signal.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double one = 1.0, hugev = 1e300;
|
||||
|
||||
static double zero = 0.0;
|
||||
|
||||
double __fdlibm_atanh(double x) {
|
||||
double t;
|
||||
int hx, ix;
|
||||
unsigned lx;
|
||||
hx = __HI(x); /* high word */
|
||||
lx = __LO(x); /* low word */
|
||||
ix = hx & 0x7fffffff;
|
||||
if((ix | ((lx | (-lx)) >> 31)) > 0x3ff00000) /* |x|>1 */
|
||||
return (x - x) / (x - x);
|
||||
if(ix == 0x3ff00000)
|
||||
return x / zero;
|
||||
if(ix < 0x3e300000 && (hugev + x) > zero) return x; /* x<2**-28 */
|
||||
__HI(x) = ix; /* x <- |x| */
|
||||
if(ix < 0x3fe00000) { /* x < 0.5 */
|
||||
t = x + x;
|
||||
t = 0.5 * log1p(t + t * x / (one - x));
|
||||
} else
|
||||
t = 0.5 * log1p((x + x) / (one - x));
|
||||
if(hx >= 0) return t;
|
||||
else
|
||||
return -t;
|
||||
}
|
||||
79
external/fdlibm/e_cosh.c
vendored
Normal file
79
external/fdlibm/e_cosh.c
vendored
Normal file
@@ -0,0 +1,79 @@
|
||||
|
||||
/* @(#)e_cosh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_cosh(x)
|
||||
* Method :
|
||||
* mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
|
||||
* 1. Replace x by |x| (cosh(x) = cosh(-x)).
|
||||
* 2.
|
||||
* [ exp(x) - 1 ]^2
|
||||
* 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
|
||||
* 2*exp(x)
|
||||
*
|
||||
* exp(x) + 1/exp(x)
|
||||
* ln2/2 <= x <= 22 : cosh(x) := -------------------
|
||||
* 2
|
||||
* 22 <= x <= lnovft : cosh(x) := exp(x)/2
|
||||
* lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
|
||||
* ln2ovft < x : cosh(x) := hugev*hugev (overflow)
|
||||
*
|
||||
* Special cases:
|
||||
* cosh(x) is |x| if x is +INF, -INF, or NaN.
|
||||
* only cosh(0)=1 is exact for finite x.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double one = 1.0, half = 0.5, hugev = 1.0e300;
|
||||
|
||||
double __fdlibm_cosh(double x) {
|
||||
double t, w;
|
||||
int ix;
|
||||
unsigned lx;
|
||||
|
||||
/* High word of |x|. */
|
||||
ix = __HI(x);
|
||||
ix &= 0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix >= 0x7ff00000) return x * x;
|
||||
|
||||
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
|
||||
if(ix < 0x3fd62e43) {
|
||||
t = expm1(fabs(x));
|
||||
w = one + t;
|
||||
if(ix < 0x3c800000) return w; /* cosh(tinyv) = 1 */
|
||||
return one + (t * t) / (w + w);
|
||||
}
|
||||
|
||||
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
|
||||
if(ix < 0x40360000) {
|
||||
t = __fdlibm_exp(fabs(x));
|
||||
return half * t + half / t;
|
||||
}
|
||||
|
||||
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
|
||||
if(ix < 0x40862E42) return half * __fdlibm_exp(fabs(x));
|
||||
|
||||
/* |x| in [log(maxdouble), overflowthresold] */
|
||||
lx = *((((*(unsigned*)&one) >> 29)) + (unsigned*)&x);
|
||||
if(ix < 0x408633CE ||
|
||||
(ix == 0x408633ce) && (lx <= (unsigned)0x8fb9f87d)) {
|
||||
w = __fdlibm_exp(half * fabs(x));
|
||||
t = half * w;
|
||||
return t * w;
|
||||
}
|
||||
|
||||
/* |x| > overflowthresold, cosh(x) overflow */
|
||||
return hugev * hugev;
|
||||
}
|
||||
155
external/fdlibm/e_exp.c
vendored
Normal file
155
external/fdlibm/e_exp.c
vendored
Normal file
@@ -0,0 +1,155 @@
|
||||
|
||||
/* @(#)e_exp.c 1.6 04/04/22 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_exp(x)
|
||||
* Returns the exponential of x.
|
||||
*
|
||||
* Method
|
||||
* 1. Argument reduction:
|
||||
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
||||
* Given x, find r and integer k such that
|
||||
*
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
||||
*
|
||||
* Here r will be represented as r = hi-lo for better
|
||||
* accuracy.
|
||||
*
|
||||
* 2. Approximation of exp(r) by a special rational function on
|
||||
* the interval [0,0.34658]:
|
||||
* Write
|
||||
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
||||
* We use a special Remes algorithm on [0,0.34658] to generate
|
||||
* a polynomial of degree 5 to approximate R. The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-59. In
|
||||
* other words,
|
||||
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
||||
* (where z=r*r, and the values of P1 to P5 are listed below)
|
||||
* and
|
||||
* | 5 | -59
|
||||
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
||||
* | |
|
||||
* The computation of exp(r) thus becomes
|
||||
* 2*r
|
||||
* exp(r) = 1 + -------
|
||||
* R - r
|
||||
* r*R1(r)
|
||||
* = 1 + r + ----------- (for better accuracy)
|
||||
* 2 - R1(r)
|
||||
* where
|
||||
* 2 4 10
|
||||
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
||||
*
|
||||
* 3. Scale back to obtain exp(x):
|
||||
* From step 1, we have
|
||||
* exp(x) = 2^k * exp(r)
|
||||
*
|
||||
* Special cases:
|
||||
* exp(INF) is INF, exp(NaN) is NaN;
|
||||
* exp(-INF) is 0, and
|
||||
* for finite argument, only exp(0)=1 is exact.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
||||
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
halF[2] = {
|
||||
0.5,
|
||||
-0.5,
|
||||
},
|
||||
hugev = 1.0e+300, twom1000 = 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
|
||||
o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
||||
u_threshold = -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
|
||||
ln2HI[2] = {
|
||||
6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
||||
-6.93147180369123816490e-01,
|
||||
}, /* 0xbfe62e42, 0xfee00000 */
|
||||
ln2LO[2] = {
|
||||
1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
||||
-1.90821492927058770002e-10,
|
||||
}, /* 0xbdea39ef, 0x35793c76 */
|
||||
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
||||
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
||||
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
||||
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
||||
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
||||
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
||||
|
||||
double __fdlibm_exp(double x) /* default IEEE double exp */
|
||||
{
|
||||
double y, hi, lo, c, t;
|
||||
int k, xsb;
|
||||
unsigned hx;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
xsb = (hx >> 31) & 1; /* sign bit of x */
|
||||
hx &= 0x7fffffff; /* high word of |x| */
|
||||
|
||||
/* filter out non-finite argument */
|
||||
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
||||
if(hx >= 0x7ff00000) {
|
||||
if(((hx & 0xfffff) | __LO(x)) != 0)
|
||||
return x + x; /* NaN */
|
||||
else
|
||||
return (xsb == 0) ? x : 0.0; /* exp(+-inf)={inf,0} */
|
||||
}
|
||||
if(x > o_threshold) return hugev * hugev; /* overflow */
|
||||
if(x < u_threshold) return twom1000 * twom1000; /* underflow */
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
||||
hi = x - ln2HI[xsb];
|
||||
lo = ln2LO[xsb];
|
||||
k = 1 - xsb - xsb;
|
||||
} else {
|
||||
k = (int)(invln2 * x + halF[xsb]);
|
||||
t = k;
|
||||
hi = x - t * ln2HI[0]; /* t*ln2HI is exact here */
|
||||
lo = t * ln2LO[0];
|
||||
}
|
||||
x = hi - lo;
|
||||
} else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
||||
if(hugev + x > one) return one + x; /* trigger inexact */
|
||||
} else
|
||||
k = 0;
|
||||
|
||||
/* x is now in primary range */
|
||||
t = x * x;
|
||||
c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
|
||||
if(k == 0) return one - ((x * c) / (c - 2.0) - x);
|
||||
else
|
||||
y = one - ((lo - (x * c) / (2.0 - c)) - hi);
|
||||
if(k >= -1021) {
|
||||
__HI(y) += (k << 20); /* add k to y's exponent */
|
||||
return y;
|
||||
} else {
|
||||
__HI(y) += ((k + 1000) << 20); /* add k to y's exponent */
|
||||
return y * twom1000;
|
||||
}
|
||||
}
|
||||
148
external/fdlibm/e_fmod.c
vendored
Normal file
148
external/fdlibm/e_fmod.c
vendored
Normal file
@@ -0,0 +1,148 @@
|
||||
|
||||
/* @(#)e_fmod.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* __fdlibm_fmod(x,y)
|
||||
* Return x mod y in exact arithmetic
|
||||
* Method: shift and subtract
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double one = 1.0, Zero[] = {
|
||||
0.0,
|
||||
-0.0,
|
||||
};
|
||||
|
||||
double __fdlibm_fmod(double x, double y) {
|
||||
int n, hx, hy, hz, ix, iy, sx, i;
|
||||
unsigned lx, ly, lz;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
lx = __LO(x); /* low word of x */
|
||||
hy = __HI(y); /* high word of y */
|
||||
ly = __LO(y); /* low word of y */
|
||||
sx = hx & 0x80000000; /* sign of x */
|
||||
hx ^= sx; /* |x| */
|
||||
hy &= 0x7fffffff; /* |y| */
|
||||
|
||||
/* purge off exception values */
|
||||
if((hy | ly) == 0 || (hx >= 0x7ff00000) || /* y=0,or x not finite */
|
||||
((hy | ((ly | -ly) >> 31)) > 0x7ff00000)) /* or y is NaN */
|
||||
return (x * y) / (x * y);
|
||||
if(hx <= hy) {
|
||||
if((hx < hy) || (lx < ly)) return x; /* |x|<|y| return x */
|
||||
if(lx == ly)
|
||||
return Zero[(unsigned)sx >> 31]; /* |x|=|y| return x*0*/
|
||||
}
|
||||
|
||||
/* determine ix = ilogb(x) */
|
||||
if(hx < 0x00100000) { /* subnormal x */
|
||||
if(hx == 0) {
|
||||
for(ix = -1043, i = lx; i > 0; i <<= 1) ix -= 1;
|
||||
} else {
|
||||
for(ix = -1022, i = (hx << 11); i > 0; i <<= 1) ix -= 1;
|
||||
}
|
||||
} else
|
||||
ix = (hx >> 20) - 1023;
|
||||
|
||||
/* determine iy = ilogb(y) */
|
||||
if(hy < 0x00100000) { /* subnormal y */
|
||||
if(hy == 0) {
|
||||
for(iy = -1043, i = ly; i > 0; i <<= 1) iy -= 1;
|
||||
} else {
|
||||
for(iy = -1022, i = (hy << 11); i > 0; i <<= 1) iy -= 1;
|
||||
}
|
||||
} else
|
||||
iy = (hy >> 20) - 1023;
|
||||
|
||||
/* set up {hx,lx}, {hy,ly} and align y to x */
|
||||
if(ix >= -1022)
|
||||
hx = 0x00100000 | (0x000fffff & hx);
|
||||
else { /* subnormal x, shift x to normal */
|
||||
n = -1022 - ix;
|
||||
if(n <= 31) {
|
||||
hx = (hx << n) | (lx >> (32 - n));
|
||||
lx <<= n;
|
||||
} else {
|
||||
hx = lx << (n - 32);
|
||||
lx = 0;
|
||||
}
|
||||
}
|
||||
if(iy >= -1022)
|
||||
hy = 0x00100000 | (0x000fffff & hy);
|
||||
else { /* subnormal y, shift y to normal */
|
||||
n = -1022 - iy;
|
||||
if(n <= 31) {
|
||||
hy = (hy << n) | (ly >> (32 - n));
|
||||
ly <<= n;
|
||||
} else {
|
||||
hy = ly << (n - 32);
|
||||
ly = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* fix point fmod */
|
||||
n = ix - iy;
|
||||
while(n--) {
|
||||
hz = hx - hy;
|
||||
lz = lx - ly;
|
||||
if(lx < ly) hz -= 1;
|
||||
if(hz < 0) {
|
||||
hx = hx + hx + (lx >> 31);
|
||||
lx = lx + lx;
|
||||
} else {
|
||||
if((hz | lz) == 0) /* return sign(x)*0 */
|
||||
return Zero[(unsigned)sx >> 31];
|
||||
hx = hz + hz + (lz >> 31);
|
||||
lx = lz + lz;
|
||||
}
|
||||
}
|
||||
hz = hx - hy;
|
||||
lz = lx - ly;
|
||||
if(lx < ly) hz -= 1;
|
||||
if(hz >= 0) {
|
||||
hx = hz;
|
||||
lx = lz;
|
||||
}
|
||||
|
||||
/* convert back to floating value and restore the sign */
|
||||
if((hx | lx) == 0) /* return sign(x)*0 */
|
||||
return Zero[(unsigned)sx >> 31];
|
||||
while(hx < 0x00100000) { /* normalize x */
|
||||
hx = hx + hx + (lx >> 31);
|
||||
lx = lx + lx;
|
||||
iy -= 1;
|
||||
}
|
||||
if(iy >= -1022) { /* normalize output */
|
||||
hx = ((hx - 0x00100000) | ((iy + 1023) << 20));
|
||||
__HI(x) = hx | sx;
|
||||
__LO(x) = lx;
|
||||
} else { /* subnormal output */
|
||||
n = -1022 - iy;
|
||||
if(n <= 20) {
|
||||
lx = (lx >> n) | ((unsigned)hx << (32 - n));
|
||||
hx >>= n;
|
||||
} else if(n <= 31) {
|
||||
lx = (hx << (32 - n)) | (lx >> n);
|
||||
hx = sx;
|
||||
} else {
|
||||
lx = hx >> (n - 32);
|
||||
hx = sx;
|
||||
}
|
||||
__HI(x) = hx | sx;
|
||||
__LO(x) = lx;
|
||||
x *= one; /* create necessary signal */
|
||||
}
|
||||
return x; /* exact output */
|
||||
}
|
||||
27
external/fdlibm/e_gamma.c
vendored
Normal file
27
external/fdlibm/e_gamma.c
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
|
||||
/* @(#)e_gamma.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* __fdlibm_gamma(x)
|
||||
* Return the logarithm of the Gamma function of x.
|
||||
*
|
||||
* Method: call __fdlibm_gamma_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
extern int signgam;
|
||||
|
||||
double __fdlibm_gamma(double x) {
|
||||
return __fdlibm_gamma_r(x, &signgam);
|
||||
}
|
||||
26
external/fdlibm/e_gamma_r.c
vendored
Normal file
26
external/fdlibm/e_gamma_r.c
vendored
Normal file
@@ -0,0 +1,26 @@
|
||||
|
||||
/* @(#)e_gamma_r.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* __fdlibm_gamma_r(x, signgamp)
|
||||
* Reentrant version of the logarithm of the Gamma function
|
||||
* with user provide pointer for the sign of Gamma(x).
|
||||
*
|
||||
* Method: See __fdlibm_lgamma_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double __fdlibm_gamma_r(double x, int* signgamp) {
|
||||
return __fdlibm_lgamma_r(x, signgamp);
|
||||
}
|
||||
123
external/fdlibm/e_hypot.c
vendored
Normal file
123
external/fdlibm/e_hypot.c
vendored
Normal file
@@ -0,0 +1,123 @@
|
||||
|
||||
/* @(#)e_hypot.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __math.hypot(x,y)
|
||||
*
|
||||
* Method :
|
||||
* If (assume round-to-nearest) z=x*x+y*y
|
||||
* has error less than sqrt(2)/2 ulp, than
|
||||
* sqrt(z) has error less than 1 ulp (exercise).
|
||||
*
|
||||
* So, compute sqrt(x*x+y*y) with some care as
|
||||
* follows to get the error below 1 ulp:
|
||||
*
|
||||
* Assume x>y>0;
|
||||
* (if possible, set rounding to round-to-nearest)
|
||||
* 1. if x > 2y use
|
||||
* x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
|
||||
* where x1 = x with lower 32 bits cleared, x2 = x-x1; else
|
||||
* 2. if x <= 2y use
|
||||
* t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
|
||||
* where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
|
||||
* y1= y with lower 32 bits chopped, y2 = y-y1.
|
||||
*
|
||||
* NOTE: scaling may be necessary if some argument is too
|
||||
* large or too tinyv
|
||||
*
|
||||
* Special cases:
|
||||
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
||||
* hypot(x,y) is NAN if x or y is NAN.
|
||||
*
|
||||
* Accuracy:
|
||||
* hypot(x,y) returns sqrt(x^2+y^2) with error less
|
||||
* than 1 ulps (units in the last place)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double __fdlibm_hypot(double x, double y) {
|
||||
double a = x, b = y, t1, t2, y1, y2, w;
|
||||
int j, k, ha, hb;
|
||||
|
||||
ha = __HI(x) & 0x7fffffff; /* high word of x */
|
||||
hb = __HI(y) & 0x7fffffff; /* high word of y */
|
||||
if(hb > ha) {
|
||||
a = y;
|
||||
b = x;
|
||||
j = ha;
|
||||
ha = hb;
|
||||
hb = j;
|
||||
} else {
|
||||
a = x;
|
||||
b = y;
|
||||
}
|
||||
__HI(a) = ha; /* a <- |a| */
|
||||
__HI(b) = hb; /* b <- |b| */
|
||||
if((ha - hb) > 0x3c00000) {
|
||||
return a + b;
|
||||
} /* x/y > 2**60 */
|
||||
k = 0;
|
||||
if(ha > 0x5f300000) { /* a>2**500 */
|
||||
if(ha >= 0x7ff00000) { /* Inf or NaN */
|
||||
w = a + b; /* for sNaN */
|
||||
if(((ha & 0xfffff) | __LO(a)) == 0) w = a;
|
||||
if(((hb ^ 0x7ff00000) | __LO(b)) == 0) w = b;
|
||||
return w;
|
||||
}
|
||||
/* scale a and b by 2**-600 */
|
||||
ha -= 0x25800000;
|
||||
hb -= 0x25800000;
|
||||
k += 600;
|
||||
__HI(a) = ha;
|
||||
__HI(b) = hb;
|
||||
}
|
||||
if(hb < 0x20b00000) { /* b < 2**-500 */
|
||||
if(hb <= 0x000fffff) { /* subnormal b or 0 */
|
||||
if((hb | (__LO(b))) == 0) return a;
|
||||
t1 = 0;
|
||||
__HI(t1) = 0x7fd00000; /* t1=2^1022 */
|
||||
b *= t1;
|
||||
a *= t1;
|
||||
k -= 1022;
|
||||
} else { /* scale a and b by 2^600 */
|
||||
ha += 0x25800000; /* a *= 2^600 */
|
||||
hb += 0x25800000; /* b *= 2^600 */
|
||||
k -= 600;
|
||||
__HI(a) = ha;
|
||||
__HI(b) = hb;
|
||||
}
|
||||
}
|
||||
/* medium size a and b */
|
||||
w = a - b;
|
||||
if(w > b) {
|
||||
t1 = 0;
|
||||
__HI(t1) = ha;
|
||||
t2 = a - t1;
|
||||
w = sqrt(t1 * t1 - (b * (-b) - t2 * (a + t1)));
|
||||
} else {
|
||||
a = a + a;
|
||||
y1 = 0;
|
||||
__HI(y1) = hb;
|
||||
y2 = b - y1;
|
||||
t1 = 0;
|
||||
__HI(t1) = ha + 0x00100000;
|
||||
t2 = a - t1;
|
||||
w = sqrt(t1 * y1 - (w * (-w) - (t1 * y2 + t2 * b)));
|
||||
}
|
||||
if(k != 0) {
|
||||
t1 = 1.0;
|
||||
__HI(t1) += (k << 20);
|
||||
return t1 * w;
|
||||
} else
|
||||
return w;
|
||||
}
|
||||
400
external/fdlibm/e_j0.c
vendored
Normal file
400
external/fdlibm/e_j0.c
vendored
Normal file
@@ -0,0 +1,400 @@
|
||||
|
||||
/* @(#)e_j0.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_j0(x), __fdlibm_y0(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j0(x):
|
||||
* 1. For tinyv x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
|
||||
* 2. Reduce x to |x| since j0(x)=j0(-x), and
|
||||
* for x in (0,2)
|
||||
* j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
|
||||
* (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
|
||||
* for x in (2,inf)
|
||||
* j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* as follow:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (cos(x) + sin(x))
|
||||
* sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j0(nan)= nan
|
||||
* j0(0) = 1
|
||||
* j0(inf) = 0
|
||||
*
|
||||
* Method -- y0(x):
|
||||
* 1. For x<2.
|
||||
* Since
|
||||
* y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
|
||||
* therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
|
||||
* We use the following function to approximate y0,
|
||||
* y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
|
||||
* where
|
||||
* U(z) = u00 + u01*z + ... + u06*z^6
|
||||
* V(z) = 1 + v01*z + ... + v04*z^4
|
||||
* with absolute approximation error bounded by 2**-72.
|
||||
* Note: For tinyv x, U/V = u0 and j0(x)~1, hence
|
||||
* y0(tinyv) = u0 + (2/pi)*ln(tinyv), (choose tinyv<2**-27)
|
||||
* 2. For x>=2.
|
||||
* y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
|
||||
* where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
|
||||
* by the method mentioned above.
|
||||
* 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static double pzero(double), qzero(double);
|
||||
|
||||
static const double
|
||||
hugev = 1e300,
|
||||
one = 1.0,
|
||||
invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
||||
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||
/* R0/S0 on [0, 2.00] */
|
||||
R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
|
||||
R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
|
||||
R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
|
||||
R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
|
||||
S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
|
||||
S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
|
||||
S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
|
||||
S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
|
||||
|
||||
static double zero = 0.0;
|
||||
|
||||
double __fdlibm_j0(double x) {
|
||||
double z, s, c, ss, cc, r, u, v;
|
||||
int hx, ix;
|
||||
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix >= 0x7ff00000) return one / (x * x);
|
||||
x = fabs(x);
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sin(x);
|
||||
c = cos(x);
|
||||
ss = s - c;
|
||||
cc = s + c;
|
||||
if(ix < 0x7fe00000) { /* make sure x+x not overflow */
|
||||
z = -cos(x + x);
|
||||
if((s * c) < zero) cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
}
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix > 0x48000000) z = (invsqrtpi * cc) / sqrt(x);
|
||||
else {
|
||||
u = pzero(x);
|
||||
v = qzero(x);
|
||||
z = invsqrtpi * (u * cc - v * ss) / sqrt(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix < 0x3f200000) { /* |x| < 2**-13 */
|
||||
if(hugev + x > one) { /* raise inexact if x != 0 */
|
||||
if(ix < 0x3e400000) return one; /* |x|<2**-27 */
|
||||
else
|
||||
return one - 0.25 * x * x;
|
||||
}
|
||||
}
|
||||
z = x * x;
|
||||
r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
|
||||
s = one + z * (S01 + z * (S02 + z * (S03 + z * S04)));
|
||||
if(ix < 0x3FF00000) { /* |x| < 1.00 */
|
||||
return one + z * (-0.25 + (r / s));
|
||||
} else {
|
||||
u = 0.5 * x;
|
||||
return ((one + u) * (one - u) + z * (r / s));
|
||||
}
|
||||
}
|
||||
|
||||
static const double
|
||||
u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
|
||||
u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
|
||||
u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
|
||||
u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
|
||||
u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
|
||||
u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
|
||||
u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
|
||||
v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
|
||||
v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
|
||||
v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
|
||||
v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
|
||||
|
||||
double __fdlibm_y0(double x) {
|
||||
double z, s, c, ss, cc, u, v;
|
||||
int hx, ix, lx;
|
||||
|
||||
hx = __HI(x);
|
||||
ix = 0x7fffffff & hx;
|
||||
lx = __LO(x);
|
||||
/* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
|
||||
if(ix >= 0x7ff00000) return one / (x + x * x);
|
||||
if((ix | lx) == 0) return -one / zero;
|
||||
if(hx < 0) return zero / zero;
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
/* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
|
||||
* where x0 = x-pi/4
|
||||
* Better formula:
|
||||
* cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) + cos(x))
|
||||
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
s = sin(x);
|
||||
c = cos(x);
|
||||
ss = s - c;
|
||||
cc = s + c;
|
||||
/*
|
||||
* j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
|
||||
* y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix < 0x7fe00000) { /* make sure x+x not overflow */
|
||||
z = -cos(x + x);
|
||||
if((s * c) < zero) cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
}
|
||||
if(ix > 0x48000000) z = (invsqrtpi * ss) / sqrt(x);
|
||||
else {
|
||||
u = pzero(x);
|
||||
v = qzero(x);
|
||||
z = invsqrtpi * (u * ss + v * cc) / sqrt(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix <= 0x3e400000) { /* x < 2**-27 */
|
||||
return (u00 + tpi * __fdlibm_log(x));
|
||||
}
|
||||
z = x * x;
|
||||
u = u00 + z * (u01 + z * (u02 + z * (u03 + z * (u04 + z * (u05 + z * u06)))));
|
||||
v = one + z * (v01 + z * (v02 + z * (v03 + z * v04)));
|
||||
return (u / v + tpi * (__fdlibm_j0(x) * __fdlibm_log(x)));
|
||||
}
|
||||
|
||||
/* The asymptotic expansions of pzero is
|
||||
* 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
|
||||
* For x >= 2, We approximate pzero by
|
||||
* pzero(x) = 1 + (R/S)
|
||||
* where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
|
||||
* S = 1 + pS0*s^2 + ... + pS4*s^10
|
||||
* and
|
||||
* | pzero(x)-1-R/S | <= 2 ** ( -60.26)
|
||||
*/
|
||||
static const double pR8[6] = {
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
-7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
|
||||
-8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
|
||||
-2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
|
||||
-2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
|
||||
-5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
|
||||
};
|
||||
static const double pS8[5] = {
|
||||
1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
|
||||
3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
|
||||
4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
|
||||
1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
|
||||
4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
|
||||
};
|
||||
|
||||
static const double pR5[6] = {
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
|
||||
-7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
|
||||
-4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
|
||||
-6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
|
||||
-3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
|
||||
-3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
|
||||
};
|
||||
static const double pS5[5] = {
|
||||
6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
|
||||
1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
|
||||
5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
|
||||
9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
|
||||
2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
|
||||
};
|
||||
|
||||
static const double pR3[6] = {
|
||||
/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
-2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
|
||||
-7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
|
||||
-2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
|
||||
-2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
|
||||
-5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
|
||||
-3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
|
||||
};
|
||||
static const double pS3[5] = {
|
||||
3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
|
||||
3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
|
||||
1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
|
||||
1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
|
||||
1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
|
||||
};
|
||||
|
||||
static const double pR2[6] = {
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
|
||||
-7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
|
||||
-1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
|
||||
-7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
|
||||
-1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
|
||||
-3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
|
||||
};
|
||||
static const double pS2[5] = {
|
||||
2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
|
||||
1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
|
||||
2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
|
||||
1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
|
||||
1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
|
||||
};
|
||||
|
||||
static double pzero(double x) {
|
||||
const double *p, *q;
|
||||
double z, r, s;
|
||||
int ix;
|
||||
ix = 0x7fffffff & __HI(x);
|
||||
if(ix >= 0x40200000) {
|
||||
p = pR8;
|
||||
q = pS8;
|
||||
} else if(ix >= 0x40122E8B) {
|
||||
p = pR5;
|
||||
q = pS5;
|
||||
} else if(ix >= 0x4006DB6D) {
|
||||
p = pR3;
|
||||
q = pS3;
|
||||
} else if(ix >= 0x40000000) {
|
||||
p = pR2;
|
||||
q = pS2;
|
||||
}
|
||||
z = one / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = one + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
|
||||
return one + r / s;
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qzero is
|
||||
* -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pzero by
|
||||
* qzero(x) = s*(-1.25 + (R/S))
|
||||
* where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
|
||||
* S = 1 + qS0*s^2 + ... + qS5*s^12
|
||||
* and
|
||||
* | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
|
||||
*/
|
||||
static const double qR8[6] = {
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
|
||||
1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
|
||||
5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
|
||||
8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
|
||||
3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
|
||||
};
|
||||
static const double qS8[6] = {
|
||||
1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
|
||||
8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
|
||||
1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
|
||||
8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
|
||||
8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
|
||||
-3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
|
||||
};
|
||||
|
||||
static const double qR5[6] = {
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
|
||||
7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
|
||||
5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
|
||||
1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
|
||||
1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
|
||||
1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
|
||||
};
|
||||
static const double qS5[6] = {
|
||||
8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
|
||||
2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
|
||||
1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
|
||||
5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
|
||||
3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
|
||||
-5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
|
||||
};
|
||||
|
||||
static const double qR3[6] = {
|
||||
/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
||||
4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
|
||||
7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
|
||||
3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
|
||||
4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
|
||||
1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
|
||||
1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
|
||||
};
|
||||
static const double qS3[6] = {
|
||||
4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
|
||||
7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
|
||||
3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
|
||||
6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
|
||||
2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
|
||||
-1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
|
||||
};
|
||||
|
||||
static const double qR2[6] = {
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
|
||||
7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
|
||||
1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
|
||||
1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
|
||||
3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
|
||||
1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
|
||||
};
|
||||
static const double qS2[6] = {
|
||||
3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
|
||||
2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
|
||||
8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
|
||||
8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
|
||||
2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
|
||||
-5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
|
||||
};
|
||||
|
||||
static double qzero(double x) {
|
||||
const double *p, *q;
|
||||
double s, r, z;
|
||||
int ix;
|
||||
ix = 0x7fffffff & __HI(x);
|
||||
if(ix >= 0x40200000) {
|
||||
p = qR8;
|
||||
q = qS8;
|
||||
} else if(ix >= 0x40122E8B) {
|
||||
p = qR5;
|
||||
q = qS5;
|
||||
} else if(ix >= 0x4006DB6D) {
|
||||
p = qR3;
|
||||
q = qS3;
|
||||
} else if(ix >= 0x40000000) {
|
||||
p = qR2;
|
||||
q = qS2;
|
||||
}
|
||||
z = one / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = one + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
|
||||
return (-.125 + r / s) / x;
|
||||
}
|
||||
393
external/fdlibm/e_j1.c
vendored
Normal file
393
external/fdlibm/e_j1.c
vendored
Normal file
@@ -0,0 +1,393 @@
|
||||
|
||||
/* @(#)e_j1.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_j1(x), __fdlibm_y1(x)
|
||||
* Bessel function of the first and second kinds of order zero.
|
||||
* Method -- j1(x):
|
||||
* 1. For tinyv x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
|
||||
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
|
||||
* for x in (0,2)
|
||||
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
|
||||
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
|
||||
* for x in (2,inf)
|
||||
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||
* as follow:
|
||||
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = -1/sqrt(2) * (sin(x) + cos(x))
|
||||
* (To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.)
|
||||
*
|
||||
* 3 Special cases
|
||||
* j1(nan)= nan
|
||||
* j1(0) = 0
|
||||
* j1(inf) = 0
|
||||
*
|
||||
* Method -- y1(x):
|
||||
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
|
||||
* 2. For x<2.
|
||||
* Since
|
||||
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
|
||||
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
|
||||
* We use the following function to approximate y1,
|
||||
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
|
||||
* where for x in [0,2] (abs err less than 2**-65.89)
|
||||
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
|
||||
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
|
||||
* Note: For tinyv x, 1/x dominate y1 and hence
|
||||
* y1(tinyv) = -2/pi/tinyv, (choose tinyv<2**-54)
|
||||
* 3. For x>=2.
|
||||
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
||||
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
||||
* by method mentioned above.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static double pone(double), qone(double);
|
||||
|
||||
static const double
|
||||
hugev = 1e300,
|
||||
one = 1.0,
|
||||
invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
||||
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||
/* R0/S0 on [0,2] */
|
||||
r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
|
||||
r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
|
||||
r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
|
||||
r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
|
||||
s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
|
||||
s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
|
||||
s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
|
||||
s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
|
||||
s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
|
||||
|
||||
static double zero = 0.0;
|
||||
|
||||
double __fdlibm_j1(double x) {
|
||||
double z, s, c, ss, cc, r, u, v, y;
|
||||
int hx, ix;
|
||||
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix >= 0x7ff00000) return one / x;
|
||||
y = fabs(x);
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sin(y);
|
||||
c = cos(y);
|
||||
ss = -s - c;
|
||||
cc = s - c;
|
||||
if(ix < 0x7fe00000) { /* make sure y+y not overflow */
|
||||
z = cos(y + y);
|
||||
if((s * c) > zero) cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
}
|
||||
/*
|
||||
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
||||
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
||||
*/
|
||||
if(ix > 0x48000000) z = (invsqrtpi * cc) / sqrt(y);
|
||||
else {
|
||||
u = pone(y);
|
||||
v = qone(y);
|
||||
z = invsqrtpi * (u * cc - v * ss) / sqrt(y);
|
||||
}
|
||||
if(hx < 0) return -z;
|
||||
else
|
||||
return z;
|
||||
}
|
||||
if(ix < 0x3e400000) { /* |x|<2**-27 */
|
||||
if(hugev + x > one) return 0.5 * x; /* inexact if x!=0 necessary */
|
||||
}
|
||||
z = x * x;
|
||||
r = z * (r00 + z * (r01 + z * (r02 + z * r03)));
|
||||
s = one + z * (s01 + z * (s02 + z * (s03 + z * (s04 + z * s05))));
|
||||
r *= x;
|
||||
return (x * 0.5 + r / s);
|
||||
}
|
||||
|
||||
static const double U0[5] = {
|
||||
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
|
||||
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
|
||||
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
|
||||
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
|
||||
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
|
||||
};
|
||||
static const double V0[5] = {
|
||||
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
|
||||
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
|
||||
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
|
||||
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
|
||||
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
|
||||
};
|
||||
|
||||
double __fdlibm_y1(double x) {
|
||||
double z, s, c, ss, cc, u, v;
|
||||
int hx, ix, lx;
|
||||
|
||||
hx = __HI(x);
|
||||
ix = 0x7fffffff & hx;
|
||||
lx = __LO(x);
|
||||
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
|
||||
if(ix >= 0x7ff00000) return one / (x + x * x);
|
||||
if((ix | lx) == 0) return -one / zero;
|
||||
if(hx < 0) return zero / zero;
|
||||
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
||||
s = sin(x);
|
||||
c = cos(x);
|
||||
ss = -s - c;
|
||||
cc = s - c;
|
||||
if(ix < 0x7fe00000) { /* make sure x+x not overflow */
|
||||
z = cos(x + x);
|
||||
if((s * c) > zero) cc = z / ss;
|
||||
else
|
||||
ss = z / cc;
|
||||
}
|
||||
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
||||
* where x0 = x-3pi/4
|
||||
* Better formula:
|
||||
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
||||
* = 1/sqrt(2) * (sin(x) - cos(x))
|
||||
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
||||
* = -1/sqrt(2) * (cos(x) + sin(x))
|
||||
* To avoid cancellation, use
|
||||
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
||||
* to compute the worse one.
|
||||
*/
|
||||
if(ix > 0x48000000) z = (invsqrtpi * ss) / sqrt(x);
|
||||
else {
|
||||
u = pone(x);
|
||||
v = qone(x);
|
||||
z = invsqrtpi * (u * ss + v * cc) / sqrt(x);
|
||||
}
|
||||
return z;
|
||||
}
|
||||
if(ix <= 0x3c900000) { /* x < 2**-54 */
|
||||
return (-tpi / x);
|
||||
}
|
||||
z = x * x;
|
||||
u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
|
||||
v = one + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
|
||||
return (x * (u / v) + tpi * (__fdlibm_j1(x) * __fdlibm_log(x) - one / x));
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of pone is
|
||||
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* pone(x) = 1 + (R/S)
|
||||
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
||||
* S = 1 + ps0*s^2 + ... + ps4*s^10
|
||||
* and
|
||||
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
|
||||
*/
|
||||
|
||||
static const double pr8[6] = {
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
|
||||
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
|
||||
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
|
||||
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
|
||||
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
|
||||
};
|
||||
static const double ps8[5] = {
|
||||
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
|
||||
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
|
||||
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
|
||||
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
|
||||
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
|
||||
};
|
||||
|
||||
static const double pr5[6] = {
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
|
||||
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
|
||||
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
|
||||
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
|
||||
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
|
||||
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
|
||||
};
|
||||
static const double ps5[5] = {
|
||||
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
|
||||
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
|
||||
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
|
||||
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
|
||||
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
|
||||
};
|
||||
|
||||
static const double pr3[6] = {
|
||||
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
|
||||
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
|
||||
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
|
||||
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
|
||||
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
|
||||
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
|
||||
};
|
||||
static const double ps3[5] = {
|
||||
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
|
||||
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
|
||||
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
|
||||
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
|
||||
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
|
||||
};
|
||||
|
||||
static const double pr2[6] = {
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
|
||||
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
|
||||
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
|
||||
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
|
||||
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
|
||||
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
|
||||
};
|
||||
static const double ps2[5] = {
|
||||
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
|
||||
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
|
||||
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
|
||||
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
|
||||
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
|
||||
};
|
||||
|
||||
static double pone(double x) {
|
||||
const double *p, *q;
|
||||
double z, r, s;
|
||||
int ix;
|
||||
ix = 0x7fffffff & __HI(x);
|
||||
if(ix >= 0x40200000) {
|
||||
p = pr8;
|
||||
q = ps8;
|
||||
} else if(ix >= 0x40122E8B) {
|
||||
p = pr5;
|
||||
q = ps5;
|
||||
} else if(ix >= 0x4006DB6D) {
|
||||
p = pr3;
|
||||
q = ps3;
|
||||
} else if(ix >= 0x40000000) {
|
||||
p = pr2;
|
||||
q = ps2;
|
||||
}
|
||||
z = one / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = one + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
|
||||
return one + r / s;
|
||||
}
|
||||
|
||||
/* For x >= 8, the asymptotic expansions of qone is
|
||||
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
||||
* We approximate pone by
|
||||
* qone(x) = s*(0.375 + (R/S))
|
||||
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
||||
* S = 1 + qs1*s^2 + ... + qs6*s^12
|
||||
* and
|
||||
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
|
||||
*/
|
||||
|
||||
static const double qr8[6] = {
|
||||
/* for x in [inf, 8]=1/[0,0.125] */
|
||||
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
|
||||
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
|
||||
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
|
||||
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
|
||||
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
|
||||
};
|
||||
static const double qs8[6] = {
|
||||
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
|
||||
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
|
||||
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
|
||||
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
|
||||
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
|
||||
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
|
||||
};
|
||||
|
||||
static const double qr5[6] = {
|
||||
/* for x in [8,4.5454]=1/[0.125,0.22001] */
|
||||
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
|
||||
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
|
||||
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
|
||||
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
|
||||
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
|
||||
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
|
||||
};
|
||||
static const double qs5[6] = {
|
||||
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
|
||||
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
|
||||
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
|
||||
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
|
||||
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
|
||||
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
|
||||
};
|
||||
|
||||
static const double qr3[6] = {
|
||||
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
|
||||
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
|
||||
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
|
||||
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
|
||||
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
|
||||
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
|
||||
};
|
||||
static const double qs3[6] = {
|
||||
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
|
||||
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
|
||||
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
|
||||
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
|
||||
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
|
||||
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
|
||||
};
|
||||
|
||||
static const double qr2[6] = {
|
||||
/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
||||
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
|
||||
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
|
||||
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
|
||||
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
|
||||
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
|
||||
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
|
||||
};
|
||||
static const double qs2[6] = {
|
||||
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
|
||||
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
|
||||
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
|
||||
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
|
||||
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
|
||||
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
|
||||
};
|
||||
|
||||
static double qone(double x) {
|
||||
const double *p, *q;
|
||||
double s, r, z;
|
||||
int ix;
|
||||
ix = 0x7fffffff & __HI(x);
|
||||
if(ix >= 0x40200000) {
|
||||
p = qr8;
|
||||
q = qs8;
|
||||
} else if(ix >= 0x40122E8B) {
|
||||
p = qr5;
|
||||
q = qs5;
|
||||
} else if(ix >= 0x4006DB6D) {
|
||||
p = qr3;
|
||||
q = qs3;
|
||||
} else if(ix >= 0x40000000) {
|
||||
p = qr2;
|
||||
q = qs2;
|
||||
}
|
||||
z = one / (x * x);
|
||||
r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
|
||||
s = one + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
|
||||
return (.375 + r / s) / x;
|
||||
}
|
||||
283
external/fdlibm/e_jn.c
vendored
Normal file
283
external/fdlibm/e_jn.c
vendored
Normal file
@@ -0,0 +1,283 @@
|
||||
|
||||
/* @(#)e_jn.c 1.4 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* __fdlibm_jn(n, x), __fdlibm_yn(n, x)
|
||||
* floating point Bessel's function of the 1st and 2nd kind
|
||||
* of order n
|
||||
*
|
||||
* Special cases:
|
||||
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
||||
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
||||
* Note 2. About jn(n,x), yn(n,x)
|
||||
* For n=0, j0(x) is called,
|
||||
* for n=1, j1(x) is called,
|
||||
* for n<x, forward recursion us used starting
|
||||
* from values of j0(x) and j1(x).
|
||||
* for n>x, a continued fraction approximation to
|
||||
* j(n,x)/j(n-1,x) is evaluated and then backward
|
||||
* recursion is used starting from a supposed value
|
||||
* for j(n,x). The resulting value of j(0,x) is
|
||||
* compared with the actual value to correct the
|
||||
* supposed value of j(n,x).
|
||||
*
|
||||
* yn(n,x) is similar in all respects, except
|
||||
* that forward recursion is used for all
|
||||
* values of n>1.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
||||
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
||||
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
|
||||
|
||||
static double zero = 0.00000000000000000000e+00;
|
||||
|
||||
double __fdlibm_jn(int n, double x) {
|
||||
int i, hx, ix, lx, sgn;
|
||||
double a, b, temp, di;
|
||||
double z, w;
|
||||
|
||||
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
||||
* Thus, J(-n,x) = J(n,-x)
|
||||
*/
|
||||
hx = __HI(x);
|
||||
ix = 0x7fffffff & hx;
|
||||
lx = __LO(x);
|
||||
/* if J(n,NaN) is NaN */
|
||||
if((ix | ((unsigned)(lx | -lx)) >> 31) > 0x7ff00000) return x + x;
|
||||
if(n < 0) {
|
||||
n = -n;
|
||||
x = -x;
|
||||
hx ^= 0x80000000;
|
||||
}
|
||||
if(n == 0) return (__fdlibm_j0(x));
|
||||
if(n == 1) return (__fdlibm_j1(x));
|
||||
sgn = (n & 1) & (hx >> 31); /* even n -- 0, odd n -- sign(x) */
|
||||
x = fabs(x);
|
||||
if((ix | lx) == 0 || ix >= 0x7ff00000) /* if x is 0 or inf */
|
||||
b = zero;
|
||||
else if((double)n <= x) {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if(ix >= 0x52D00000) { /* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
switch(n & 3) {
|
||||
case 0:
|
||||
temp = cos(x) + sin(x);
|
||||
break;
|
||||
case 1:
|
||||
temp = -cos(x) + sin(x);
|
||||
break;
|
||||
case 2:
|
||||
temp = -cos(x) - sin(x);
|
||||
break;
|
||||
case 3:
|
||||
temp = cos(x) - sin(x);
|
||||
break;
|
||||
}
|
||||
b = invsqrtpi * temp / sqrt(x);
|
||||
} else {
|
||||
a = __fdlibm_j0(x);
|
||||
b = __fdlibm_j1(x);
|
||||
for(i = 1; i < n; i++) {
|
||||
temp = b;
|
||||
b = b * ((double)(i + i) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if(ix < 0x3e100000) { /* x < 2**-29 */
|
||||
/* x is tinyv, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if(n > 33) /* underflow */
|
||||
b = zero;
|
||||
else {
|
||||
temp = x * 0.5;
|
||||
b = temp;
|
||||
for(a = one, i = 2; i <= n; i++) {
|
||||
a *= (double)i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
} else {
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
double t, v;
|
||||
double q0, q1, h, tmp;
|
||||
int k, m;
|
||||
w = (n + n) / (double)x;
|
||||
h = 2.0 / (double)x;
|
||||
q0 = w;
|
||||
z = w + h;
|
||||
q1 = w * z - 1.0;
|
||||
k = 1;
|
||||
while(q1 < 1.0e9) {
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n + n;
|
||||
for(t = zero, i = 2 * (n + k); i >= m; i -= 2) t = one / (i / x - t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two / x;
|
||||
tmp = tmp * __fdlibm_log(fabs(v * tmp));
|
||||
if(tmp < 7.09782712893383973096e+02) {
|
||||
for(i = n - 1, di = (double)(i + i); i > 0; i--) {
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
} else {
|
||||
for(i = n - 1, di = (double)(i + i); i > 0; i--) {
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if(b > 1e100) {
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
b = (t * __fdlibm_j0(x) / b);
|
||||
}
|
||||
}
|
||||
if(sgn == 1) return -b;
|
||||
else
|
||||
return b;
|
||||
}
|
||||
|
||||
double __fdlibm_yn(int n, double x) {
|
||||
int i, hx, ix, lx;
|
||||
int sign;
|
||||
double a, b, temp;
|
||||
|
||||
hx = __HI(x);
|
||||
ix = 0x7fffffff & hx;
|
||||
lx = __LO(x);
|
||||
/* if Y(n,NaN) is NaN */
|
||||
if((ix | ((unsigned)(lx | -lx)) >> 31) > 0x7ff00000) return x + x;
|
||||
if((ix | lx) == 0) return -one / zero;
|
||||
if(hx < 0) return zero / zero;
|
||||
sign = 1;
|
||||
if(n < 0) {
|
||||
n = -n;
|
||||
sign = 1 - ((n & 1) << 1);
|
||||
}
|
||||
if(n == 0) return (__fdlibm_y0(x));
|
||||
if(n == 1) return (sign * __fdlibm_y1(x));
|
||||
if(ix == 0x7ff00000) return zero;
|
||||
if(ix >= 0x52D00000) { /* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
switch(n & 3) {
|
||||
case 0:
|
||||
temp = sin(x) - cos(x);
|
||||
break;
|
||||
case 1:
|
||||
temp = -sin(x) - cos(x);
|
||||
break;
|
||||
case 2:
|
||||
temp = -sin(x) + cos(x);
|
||||
break;
|
||||
case 3:
|
||||
temp = sin(x) + cos(x);
|
||||
break;
|
||||
}
|
||||
b = invsqrtpi * temp / sqrt(x);
|
||||
} else {
|
||||
a = __fdlibm_y0(x);
|
||||
b = __fdlibm_y1(x);
|
||||
/* quit if b is -inf */
|
||||
for(i = 1; i < n && (__HI(b) != 0xfff00000); i++) {
|
||||
temp = b;
|
||||
b = ((double)(i + i) / x) * b - a;
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
if(sign > 0) return b;
|
||||
else
|
||||
return -b;
|
||||
}
|
||||
27
external/fdlibm/e_lgamma.c
vendored
Normal file
27
external/fdlibm/e_lgamma.c
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
|
||||
/* @(#)e_lgamma.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* __fdlibm_lgamma(x)
|
||||
* Return the logarithm of the Gamma function of x.
|
||||
*
|
||||
* Method: call __fdlibm_lgamma_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
extern int signgam;
|
||||
|
||||
double __fdlibm_lgamma(double x) {
|
||||
return __fdlibm_lgamma_r(x, &signgam);
|
||||
}
|
||||
322
external/fdlibm/e_lgamma_r.c
vendored
Normal file
322
external/fdlibm/e_lgamma_r.c
vendored
Normal file
@@ -0,0 +1,322 @@
|
||||
|
||||
/* @(#)e_lgamma_r.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* __fdlibm_lgamma_r(x, signgamp)
|
||||
* Reentrant version of the logarithm of the Gamma function
|
||||
* with user provide pointer for the sign of Gamma(x).
|
||||
*
|
||||
* Method:
|
||||
* 1. Argument Reduction for 0 < x <= 8
|
||||
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
|
||||
* reduce x to a number in [1.5,2.5] by
|
||||
* lgamma(1+s) = log(s) + lgamma(s)
|
||||
* for example,
|
||||
* lgamma(7.3) = log(6.3) + lgamma(6.3)
|
||||
* = log(6.3*5.3) + lgamma(5.3)
|
||||
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
|
||||
* 2. Polynomial approximation of lgamma around its
|
||||
* minimun ymin=1.461632144968362245 to maintain monotonicity.
|
||||
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
|
||||
* Let z = x-ymin;
|
||||
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
|
||||
* where
|
||||
* poly(z) is a 14 degree polynomial.
|
||||
* 2. Rational approximation in the primary interval [2,3]
|
||||
* We use the following approximation:
|
||||
* s = x-2.0;
|
||||
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
|
||||
* with accuracy
|
||||
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
|
||||
* Our algorithms are based on the following observation
|
||||
*
|
||||
* zeta(2)-1 2 zeta(3)-1 3
|
||||
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
|
||||
* 2 3
|
||||
*
|
||||
* where Euler = 0.5771... is the Euler constant, which is very
|
||||
* close to 0.5.
|
||||
*
|
||||
* 3. For x>=8, we have
|
||||
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
|
||||
* (better formula:
|
||||
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
|
||||
* Let z = 1/x, then we approximation
|
||||
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
|
||||
* by
|
||||
* 3 5 11
|
||||
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
|
||||
* where
|
||||
* |w - f(z)| < 2**-58.74
|
||||
*
|
||||
* 4. For negative x, since (G is gamma function)
|
||||
* -x*G(-x)*G(x) = pi/sin(pi*x),
|
||||
* we have
|
||||
* G(x) = pi/(sin(pi*x)*(-x)*G(-x))
|
||||
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
|
||||
* Hence, for x<0, signgam = sign(sin(pi*x)) and
|
||||
* lgamma(x) = log(|Gamma(x)|)
|
||||
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
|
||||
* Note: one should avoid compute pi*(-x) directly in the
|
||||
* computation of sin(pi*(-x)).
|
||||
*
|
||||
* 5. Special Cases
|
||||
* lgamma(2+s) ~ s*(1-Euler) for tinyv s
|
||||
* lgamma(1)=lgamma(2)=0
|
||||
* lgamma(x) ~ -log(x) for tinyv x
|
||||
* lgamma(0) = lgamma(inf) = inf
|
||||
* lgamma(-integer) = +-inf
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
two52 = 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
|
||||
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
||||
a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
|
||||
a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
|
||||
a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
|
||||
a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
|
||||
a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
|
||||
a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
|
||||
a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
|
||||
a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
|
||||
a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
|
||||
a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
|
||||
a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
|
||||
a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
|
||||
tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
|
||||
tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
|
||||
/* tt = -(tail of tf) */
|
||||
tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
|
||||
t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
|
||||
t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
|
||||
t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
|
||||
t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
|
||||
t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
|
||||
t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
|
||||
t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
|
||||
t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
|
||||
t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
|
||||
t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
|
||||
t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
|
||||
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
|
||||
t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
|
||||
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
|
||||
t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
|
||||
u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
|
||||
u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
|
||||
u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
|
||||
u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
|
||||
u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
|
||||
u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
|
||||
v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
|
||||
v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
|
||||
v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
|
||||
v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
|
||||
v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
|
||||
s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
|
||||
s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
|
||||
s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
|
||||
s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
|
||||
s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
|
||||
s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
|
||||
s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
|
||||
r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
|
||||
r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
|
||||
r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
|
||||
r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
|
||||
r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
|
||||
r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
|
||||
w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
|
||||
w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
|
||||
w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
|
||||
w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
|
||||
w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
|
||||
w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
|
||||
w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
|
||||
|
||||
static double zero = 0.00000000000000000000e+00;
|
||||
|
||||
static double sin_pi(double x) {
|
||||
double y, z;
|
||||
int n, ix;
|
||||
|
||||
ix = 0x7fffffff & __HI(x);
|
||||
|
||||
if(ix < 0x3fd00000) return __fdlibm_kernel_sin(pi * x, zero, 0);
|
||||
y = -x; /* x is assume negative */
|
||||
|
||||
/*
|
||||
* argument reduction, make sure inexact flag not raised if input
|
||||
* is an integer
|
||||
*/
|
||||
z = floor(y);
|
||||
if(z != y) { /* inexact anyway */
|
||||
y *= 0.5;
|
||||
y = 2.0 * (y - floor(y)); /* y = |x| mod 2.0 */
|
||||
n = (int)(y * 4.0);
|
||||
} else {
|
||||
if(ix >= 0x43400000) {
|
||||
y = zero;
|
||||
n = 0; /* y must be even */
|
||||
} else {
|
||||
if(ix < 0x43300000) z = y + two52; /* exact */
|
||||
n = __LO(z) & 1; /* lower word of z */
|
||||
y = n;
|
||||
n <<= 2;
|
||||
}
|
||||
}
|
||||
switch(n) {
|
||||
case 0:
|
||||
y = __fdlibm_kernel_sin(pi * y, zero, 0);
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
y = __fdlibm_kernel_cos(pi * (0.5 - y), zero);
|
||||
break;
|
||||
case 3:
|
||||
case 4:
|
||||
y = __fdlibm_kernel_sin(pi * (one - y), zero, 0);
|
||||
break;
|
||||
case 5:
|
||||
case 6:
|
||||
y = -__fdlibm_kernel_cos(pi * (y - 1.5), zero);
|
||||
break;
|
||||
default:
|
||||
y = __fdlibm_kernel_sin(pi * (y - 2.0), zero, 0);
|
||||
break;
|
||||
}
|
||||
return -y;
|
||||
}
|
||||
|
||||
double __fdlibm_lgamma_r(double x, int* signgamp) {
|
||||
double t, y, z, nadj, p, p1, p2, p3, q, r, w;
|
||||
int i, hx, lx, ix;
|
||||
|
||||
hx = __HI(x);
|
||||
lx = __LO(x);
|
||||
|
||||
/* purge off +-inf, NaN, +-0, and negative arguments */
|
||||
*signgamp = 1;
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix >= 0x7ff00000) return x * x;
|
||||
if((ix | lx) == 0) return one / zero;
|
||||
if(ix < 0x3b900000) { /* |x|<2**-70, return -log(|x|) */
|
||||
if(hx < 0) {
|
||||
*signgamp = -1;
|
||||
return -__fdlibm_log(-x);
|
||||
} else
|
||||
return -__fdlibm_log(x);
|
||||
}
|
||||
if(hx < 0) {
|
||||
if(ix >= 0x43300000) /* |x|>=2**52, must be -integer */
|
||||
return one / zero;
|
||||
t = sin_pi(x);
|
||||
if(t == zero) return one / zero; /* -integer */
|
||||
nadj = __fdlibm_log(pi / fabs(t * x));
|
||||
if(t < zero) *signgamp = -1;
|
||||
x = -x;
|
||||
}
|
||||
|
||||
/* purge off 1 and 2 */
|
||||
if((((ix - 0x3ff00000) | lx) == 0) || (((ix - 0x40000000) | lx) == 0)) r = 0;
|
||||
/* for x < 2.0 */
|
||||
else if(ix < 0x40000000) {
|
||||
if(ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
|
||||
r = -__fdlibm_log(x);
|
||||
if(ix >= 0x3FE76944) {
|
||||
y = one - x;
|
||||
i = 0;
|
||||
} else if(ix >= 0x3FCDA661) {
|
||||
y = x - (tc - one);
|
||||
i = 1;
|
||||
} else {
|
||||
y = x;
|
||||
i = 2;
|
||||
}
|
||||
} else {
|
||||
r = zero;
|
||||
if(ix >= 0x3FFBB4C3) {
|
||||
y = 2.0 - x;
|
||||
i = 0;
|
||||
} /* [1.7316,2] */
|
||||
else if(ix >= 0x3FF3B4C4) {
|
||||
y = x - tc;
|
||||
i = 1;
|
||||
} /* [1.23,1.73] */
|
||||
else {
|
||||
y = x - one;
|
||||
i = 2;
|
||||
}
|
||||
}
|
||||
switch(i) {
|
||||
case 0:
|
||||
z = y * y;
|
||||
p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10))));
|
||||
p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11)))));
|
||||
p = y * p1 + p2;
|
||||
r += (p - 0.5 * y);
|
||||
break;
|
||||
case 1:
|
||||
z = y * y;
|
||||
w = z * y;
|
||||
p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */
|
||||
p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13)));
|
||||
p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14)));
|
||||
p = z * p1 - (tt - w * (p2 + y * p3));
|
||||
r += (tf + p);
|
||||
break;
|
||||
case 2:
|
||||
p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5)))));
|
||||
p2 = one + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5))));
|
||||
r += (-0.5 * y + p1 / p2);
|
||||
}
|
||||
} else if(ix < 0x40200000) { /* x < 8.0 */
|
||||
i = (int)x;
|
||||
t = zero;
|
||||
y = x - (double)i;
|
||||
p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
|
||||
q = one + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6)))));
|
||||
r = half * y + p / q;
|
||||
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
|
||||
switch(i) {
|
||||
case 7:
|
||||
z *= (y + 6.0); /* FALLTHRU */
|
||||
case 6:
|
||||
z *= (y + 5.0); /* FALLTHRU */
|
||||
case 5:
|
||||
z *= (y + 4.0); /* FALLTHRU */
|
||||
case 4:
|
||||
z *= (y + 3.0); /* FALLTHRU */
|
||||
case 3:
|
||||
z *= (y + 2.0); /* FALLTHRU */
|
||||
r += __fdlibm_log(z);
|
||||
break;
|
||||
}
|
||||
/* 8.0 <= x < 2**58 */
|
||||
} else if(ix < 0x43900000) {
|
||||
t = __fdlibm_log(x);
|
||||
z = one / x;
|
||||
y = z * z;
|
||||
w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6)))));
|
||||
r = (x - half) * (t - one) + w;
|
||||
} else
|
||||
/* 2**58 <= x <= inf */
|
||||
r = x * (__fdlibm_log(x) - one);
|
||||
if(hx < 0) r = nadj - r;
|
||||
return r;
|
||||
}
|
||||
139
external/fdlibm/e_log.c
vendored
Normal file
139
external/fdlibm/e_log.c
vendored
Normal file
@@ -0,0 +1,139 @@
|
||||
|
||||
/* @(#)e_log.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_log(x)
|
||||
* Return the logrithm of x
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* 2. Approximation of log(1+f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
||||
* (the values of Lg1 to Lg7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log(1+f) = f - s*(f - R) (if f is not too large)
|
||||
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
||||
*
|
||||
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
||||
* log(+INF) is +INF; log(0) is -INF with signal;
|
||||
* log(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||||
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
||||
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
static double zero = 0.0;
|
||||
|
||||
double __fdlibm_log(double x) {
|
||||
double hfsq, f, s, z, R, w, t1, t2, dk;
|
||||
int k, hx, i, j;
|
||||
unsigned lx;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
lx = __LO(x); /* low word of x */
|
||||
|
||||
k = 0;
|
||||
if(hx < 0x00100000) { /* x < 2**-1022 */
|
||||
if(((hx & 0x7fffffff) | lx) == 0)
|
||||
return -two54 / zero; /* log(+-0)=-inf */
|
||||
if(hx < 0) return (x - x) / zero; /* log(-#) = NaN */
|
||||
k -= 54;
|
||||
x *= two54; /* subnormal number, scale up x */
|
||||
hx = __HI(x); /* high word of x */
|
||||
}
|
||||
if(hx >= 0x7ff00000) return x + x;
|
||||
k += (hx >> 20) - 1023;
|
||||
hx &= 0x000fffff;
|
||||
i = (hx + 0x95f64) & 0x100000;
|
||||
__HI(x) = hx | (i ^ 0x3ff00000); /* normalize x or x/2 */
|
||||
k += (i >> 20);
|
||||
f = x - 1.0;
|
||||
if((0x000fffff & (2 + hx)) < 3) { /* |f| < 2**-20 */
|
||||
if(f == zero)
|
||||
if(k == 0) return zero;
|
||||
else {
|
||||
dk = (double)k;
|
||||
return dk * ln2_hi + dk * ln2_lo;
|
||||
}
|
||||
R = f * f * (0.5 - 0.33333333333333333 * f);
|
||||
if(k == 0) return f - R;
|
||||
else {
|
||||
dk = (double)k;
|
||||
return dk * ln2_hi - ((R - dk * ln2_lo) - f);
|
||||
}
|
||||
}
|
||||
s = f / (2.0 + f);
|
||||
dk = (double)k;
|
||||
z = s * s;
|
||||
i = hx - 0x6147a;
|
||||
w = z * z;
|
||||
j = 0x6b851 - hx;
|
||||
t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
|
||||
t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
|
||||
i |= j;
|
||||
R = t2 + t1;
|
||||
if(i > 0) {
|
||||
hfsq = 0.5 * f * f;
|
||||
if(k == 0) return f - (hfsq - s * (hfsq + R));
|
||||
else
|
||||
return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f);
|
||||
} else {
|
||||
if(k == 0) return f - s * (f - R);
|
||||
else
|
||||
return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
|
||||
}
|
||||
}
|
||||
82
external/fdlibm/e_log10.c
vendored
Normal file
82
external/fdlibm/e_log10.c
vendored
Normal file
@@ -0,0 +1,82 @@
|
||||
|
||||
/* @(#)e_log10.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_log10(x)
|
||||
* Return the base 10 logarithm of x
|
||||
*
|
||||
* Method :
|
||||
* Let log10_2hi = leading 40 bits of log10(2) and
|
||||
* log10_2lo = log10(2) - log10_2hi,
|
||||
* ivln10 = 1/log(10) rounded.
|
||||
* Then
|
||||
* n = ilogb(x),
|
||||
* if(n<0) n = n+1;
|
||||
* x = scalbn(x,-n);
|
||||
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
|
||||
*
|
||||
* Note 1:
|
||||
* To guarantee log10(10**n)=n, where 10**n is normal, the rounding
|
||||
* mode must set to Round-to-Nearest.
|
||||
* Note 2:
|
||||
* [1/log(10)] rounded to 53 bits has error .198 ulps;
|
||||
* log10 is monotonic at all binary break points.
|
||||
*
|
||||
* Special cases:
|
||||
* log10(x) is NaN with signal if x < 0;
|
||||
* log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
|
||||
* log10(NaN) is that NaN with no signal;
|
||||
* log10(10**N) = N for N=0,1,...,22.
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following constants.
|
||||
* The decimal values may be used, provided that the compiler will convert
|
||||
* from decimal to binary accurately enough to produce the hexadecimal values
|
||||
* shown.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
||||
ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
|
||||
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
|
||||
log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
|
||||
|
||||
static double zero = 0.0;
|
||||
|
||||
double __fdlibm_log10(double x) {
|
||||
double y, z;
|
||||
int i, k, hx;
|
||||
unsigned lx;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
lx = __LO(x); /* low word of x */
|
||||
|
||||
k = 0;
|
||||
if(hx < 0x00100000) { /* x < 2**-1022 */
|
||||
if(((hx & 0x7fffffff) | lx) == 0)
|
||||
return -two54 / zero; /* log(+-0)=-inf */
|
||||
if(hx < 0) return (x - x) / zero; /* log(-#) = NaN */
|
||||
k -= 54;
|
||||
x *= two54; /* subnormal number, scale up x */
|
||||
hx = __HI(x); /* high word of x */
|
||||
}
|
||||
if(hx >= 0x7ff00000) return x + x;
|
||||
k += (hx >> 20) - 1023;
|
||||
i = ((unsigned)k & 0x80000000) >> 31;
|
||||
hx = (hx & 0x000fffff) | ((0x3ff - i) << 20);
|
||||
y = (double)(k + i);
|
||||
__HI(x) = hx;
|
||||
z = y * log10_2lo + ivln10 * __fdlibm_log(x);
|
||||
return z + y * log10_2hi;
|
||||
}
|
||||
314
external/fdlibm/e_pow.c
vendored
Normal file
314
external/fdlibm/e_pow.c
vendored
Normal file
@@ -0,0 +1,314 @@
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_pow(x,y) return x**y
|
||||
*
|
||||
* n
|
||||
* Method: Let x = 2 * (1+f)
|
||||
* 1. Compute and return log2(x) in two pieces:
|
||||
* log2(x) = w1 + w2,
|
||||
* where w1 has 53-24 = 29 bit trailing zeros.
|
||||
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
||||
* arithmetic, where |y'|<=0.5.
|
||||
* 3. Return x**y = 2**n*exp(y'*log2)
|
||||
*
|
||||
* Special cases:
|
||||
* 1. (anything) ** 0 is 1
|
||||
* 2. (anything) ** 1 is itself
|
||||
* 3. (anything) ** NAN is NAN
|
||||
* 4. NAN ** (anything except 0) is NAN
|
||||
* 5. +-(|x| > 1) ** +INF is +INF
|
||||
* 6. +-(|x| > 1) ** -INF is +0
|
||||
* 7. +-(|x| < 1) ** +INF is +0
|
||||
* 8. +-(|x| < 1) ** -INF is +INF
|
||||
* 9. +-1 ** +-INF is NAN
|
||||
* 10. +0 ** (+anything except 0, NAN) is +0
|
||||
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
||||
* 12. +0 ** (-anything except 0, NAN) is +INF
|
||||
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
||||
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
||||
* 15. +INF ** (+anything except 0,NAN) is +INF
|
||||
* 16. +INF ** (-anything except 0,NAN) is +0
|
||||
* 17. -INF ** (anything) = -0 ** (-anything)
|
||||
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
||||
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
||||
*
|
||||
* Accuracy:
|
||||
* pow(x,y) returns x**y nearly rounded. In particular
|
||||
* pow(integer,integer)
|
||||
* always returns the correct integer provided it is
|
||||
* representable.
|
||||
*
|
||||
* Constants :
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
bp[] = {
|
||||
1.0,
|
||||
1.5,
|
||||
},
|
||||
dp_h[] = {
|
||||
0.0,
|
||||
5.84962487220764160156e-01,
|
||||
}, /* 0x3FE2B803, 0x40000000 */
|
||||
dp_l[] = {
|
||||
0.0,
|
||||
1.35003920212974897128e-08,
|
||||
}, /* 0x3E4CFDEB, 0x43CFD006 */
|
||||
zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
|
||||
hugev = 1.0e300, tinyv = 1.0e-300,
|
||||
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
|
||||
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
|
||||
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
|
||||
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
|
||||
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
|
||||
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
|
||||
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
|
||||
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
||||
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
||||
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
||||
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
||||
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
|
||||
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
||||
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
|
||||
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
|
||||
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
|
||||
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
|
||||
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
|
||||
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
|
||||
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
|
||||
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
|
||||
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
|
||||
|
||||
double __fdlibm_pow(double x, double y) {
|
||||
double z, ax, z_h, z_l, p_h, p_l;
|
||||
double y1, t1, t2, r, s, t, u, v, w;
|
||||
int i0, i1, i, j, k, yisint, n;
|
||||
int hx, hy, ix, iy;
|
||||
unsigned lx, ly;
|
||||
|
||||
i0 = ((*(int*)&one) >> 29) ^ 1;
|
||||
i1 = 1 - i0;
|
||||
hx = __HI(x);
|
||||
lx = __LO(x);
|
||||
hy = __HI(y);
|
||||
ly = __LO(y);
|
||||
ix = hx & 0x7fffffff;
|
||||
iy = hy & 0x7fffffff;
|
||||
|
||||
/* y==zero: x**0 = 1 */
|
||||
if((iy | ly) == 0) return one;
|
||||
|
||||
/* +-NaN return x+y */
|
||||
if(ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) ||
|
||||
iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0)))
|
||||
return x + y;
|
||||
|
||||
/* determine if y is an odd int when x < 0
|
||||
* yisint = 0 ... y is not an integer
|
||||
* yisint = 1 ... y is an odd int
|
||||
* yisint = 2 ... y is an even int
|
||||
*/
|
||||
yisint = 0;
|
||||
if(hx < 0) {
|
||||
if(iy >= 0x43400000) yisint = 2; /* even integer y */
|
||||
else if(iy >= 0x3ff00000) {
|
||||
k = (iy >> 20) - 0x3ff; /* exponent */
|
||||
if(k > 20) {
|
||||
j = ly >> (52 - k);
|
||||
if((j << (52 - k)) == ly) yisint = 2 - (j & 1);
|
||||
} else if(ly == 0) {
|
||||
j = iy >> (20 - k);
|
||||
if((j << (20 - k)) == iy) yisint = 2 - (j & 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* special value of y */
|
||||
if(ly == 0) {
|
||||
if(iy == 0x7ff00000) { /* y is +-inf */
|
||||
if(((ix - 0x3ff00000) | lx) == 0)
|
||||
return y - y; /* inf**+-1 is NaN */
|
||||
else if(ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
|
||||
return (hy >= 0) ? y : zero;
|
||||
else /* (|x|<1)**-,+inf = inf,0 */
|
||||
return (hy < 0) ? -y : zero;
|
||||
}
|
||||
if(iy == 0x3ff00000) { /* y is +-1 */
|
||||
if(hy < 0) return one / x;
|
||||
else
|
||||
return x;
|
||||
}
|
||||
if(hy == 0x40000000) return x * x; /* y is 2 */
|
||||
if(hy == 0x3fe00000) { /* y is 0.5 */
|
||||
if(hx >= 0) /* x >= +0 */
|
||||
return sqrt(x);
|
||||
}
|
||||
}
|
||||
|
||||
ax = fabs(x);
|
||||
/* special value of x */
|
||||
if(lx == 0) {
|
||||
if(ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) {
|
||||
z = ax; /*x is +-0,+-inf,+-1*/
|
||||
if(hy < 0) z = one / z; /* z = (1/|x|) */
|
||||
if(hx < 0) {
|
||||
if(((ix - 0x3ff00000) | yisint) == 0) {
|
||||
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
|
||||
} else if(yisint == 1)
|
||||
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
||||
}
|
||||
return z;
|
||||
}
|
||||
}
|
||||
|
||||
n = (hx >> 31) + 1;
|
||||
|
||||
/* (x<0)**(non-int) is NaN */
|
||||
if((n | yisint) == 0) return (x - x) / (x - x);
|
||||
|
||||
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
|
||||
if((n | (yisint - 1)) == 0) s = -one; /* (-ve)**(odd int) */
|
||||
|
||||
/* |y| is hugev */
|
||||
if(iy > 0x41e00000) { /* if |y| > 2**31 */
|
||||
if(iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */
|
||||
if(ix <= 0x3fefffff) return (hy < 0) ? hugev * hugev : tinyv * tinyv;
|
||||
if(ix >= 0x3ff00000) return (hy > 0) ? hugev * hugev : tinyv * tinyv;
|
||||
}
|
||||
/* over/underflow if x is not close to one */
|
||||
if(ix < 0x3fefffff) return (hy < 0) ? s * hugev * hugev : s * tinyv * tinyv;
|
||||
if(ix > 0x3ff00000) return (hy > 0) ? s * hugev * hugev : s * tinyv * tinyv;
|
||||
/* now |1-x| is tinyv <= 2**-20, suffice to compute
|
||||
log(x) by x-x^2/2+x^3/3-x^4/4 */
|
||||
t = ax - one; /* t has 20 trailing zeros */
|
||||
w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
|
||||
u = ivln2_h * t; /* ivln2_h has 21 sig. bits */
|
||||
v = t * ivln2_l - w * ivln2;
|
||||
t1 = u + v;
|
||||
__LO(t1) = 0;
|
||||
t2 = v - (t1 - u);
|
||||
} else {
|
||||
double ss, s2, s_h, s_l, t_h, t_l;
|
||||
n = 0;
|
||||
/* take care subnormal number */
|
||||
if(ix < 0x00100000) {
|
||||
ax *= two53;
|
||||
n -= 53;
|
||||
ix = __HI(ax);
|
||||
}
|
||||
n += ((ix) >> 20) - 0x3ff;
|
||||
j = ix & 0x000fffff;
|
||||
/* determine interval */
|
||||
ix = j | 0x3ff00000; /* normalize ix */
|
||||
if(j <= 0x3988E) k = 0; /* |x|<sqrt(3/2) */
|
||||
else if(j < 0xBB67A)
|
||||
k = 1; /* |x|<sqrt(3) */
|
||||
else {
|
||||
k = 0;
|
||||
n += 1;
|
||||
ix -= 0x00100000;
|
||||
}
|
||||
__HI(ax) = ix;
|
||||
|
||||
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
||||
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
||||
v = one / (ax + bp[k]);
|
||||
ss = u * v;
|
||||
s_h = ss;
|
||||
__LO(s_h) = 0;
|
||||
/* t_h=ax+bp[k] High */
|
||||
t_h = zero;
|
||||
__HI(t_h) = ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18);
|
||||
t_l = ax - (t_h - bp[k]);
|
||||
s_l = v * ((u - s_h * t_h) - s_h * t_l);
|
||||
/* compute log(ax) */
|
||||
s2 = ss * ss;
|
||||
r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
|
||||
r += s_l * (s_h + ss);
|
||||
s2 = s_h * s_h;
|
||||
t_h = 3.0 + s2 + r;
|
||||
__LO(t_h) = 0;
|
||||
t_l = r - ((t_h - 3.0) - s2);
|
||||
/* u+v = ss*(1+...) */
|
||||
u = s_h * t_h;
|
||||
v = s_l * t_h + t_l * ss;
|
||||
/* 2/(3log2)*(ss+...) */
|
||||
p_h = u + v;
|
||||
__LO(p_h) = 0;
|
||||
p_l = v - (p_h - u);
|
||||
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
|
||||
z_l = cp_l * p_h + p_l * cp + dp_l[k];
|
||||
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
||||
t = (double)n;
|
||||
t1 = (((z_h + z_l) + dp_h[k]) + t);
|
||||
__LO(t1) = 0;
|
||||
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
||||
}
|
||||
|
||||
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
||||
y1 = y;
|
||||
__LO(y1) = 0;
|
||||
p_l = (y - y1) * t1 + y * t2;
|
||||
p_h = y1 * t1;
|
||||
z = p_l + p_h;
|
||||
j = __HI(z);
|
||||
i = __LO(z);
|
||||
if(j >= 0x40900000) { /* z >= 1024 */
|
||||
if(((j - 0x40900000) | i) != 0) /* if z > 1024 */
|
||||
return s * hugev * hugev; /* overflow */
|
||||
else {
|
||||
if(p_l + ovt > z - p_h) return s * hugev * hugev; /* overflow */
|
||||
}
|
||||
} else if((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */
|
||||
if(((j - 0xc090cc00) | i) != 0) /* z < -1075 */
|
||||
return s * tinyv * tinyv; /* underflow */
|
||||
else {
|
||||
if(p_l <= z - p_h) return s * tinyv * tinyv; /* underflow */
|
||||
}
|
||||
}
|
||||
/*
|
||||
* compute 2**(p_h+p_l)
|
||||
*/
|
||||
i = j & 0x7fffffff;
|
||||
k = (i >> 20) - 0x3ff;
|
||||
n = 0;
|
||||
if(i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
|
||||
n = j + (0x00100000 >> (k + 1));
|
||||
k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
|
||||
t = zero;
|
||||
__HI(t) = (n & ~(0x000fffff >> k));
|
||||
n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
|
||||
if(j < 0) n = -n;
|
||||
p_h -= t;
|
||||
}
|
||||
t = p_l + p_h;
|
||||
__LO(t) = 0;
|
||||
u = t * lg2_h;
|
||||
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
|
||||
z = u + v;
|
||||
w = v - (z - u);
|
||||
t = z * z;
|
||||
t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
|
||||
r = (z * t1) / (t1 - two) - (w + z * w);
|
||||
z = one - (r - z);
|
||||
j = __HI(z);
|
||||
j += (n << 20);
|
||||
if((j >> 20) <= 0) z = scalbn(z, n); /* subnormal output */
|
||||
else
|
||||
__HI(z) += (n << 20);
|
||||
return s * z;
|
||||
}
|
||||
251
external/fdlibm/e_rem_pio2.c
vendored
Normal file
251
external/fdlibm/e_rem_pio2.c
vendored
Normal file
@@ -0,0 +1,251 @@
|
||||
|
||||
/* @(#)e_rem_pio2.c 1.4 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* __fdlibm_rem_pio2(x,y)
|
||||
*
|
||||
* return the remainder of x rem pi/2 in y[0]+y[1]
|
||||
* use __fdlibm_rem_pio2()
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
/*
|
||||
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
|
||||
*/
|
||||
static const int two_over_pi[] = {
|
||||
0xA2F983,
|
||||
0x6E4E44,
|
||||
0x1529FC,
|
||||
0x2757D1,
|
||||
0xF534DD,
|
||||
0xC0DB62,
|
||||
0x95993C,
|
||||
0x439041,
|
||||
0xFE5163,
|
||||
0xABDEBB,
|
||||
0xC561B7,
|
||||
0x246E3A,
|
||||
0x424DD2,
|
||||
0xE00649,
|
||||
0x2EEA09,
|
||||
0xD1921C,
|
||||
0xFE1DEB,
|
||||
0x1CB129,
|
||||
0xA73EE8,
|
||||
0x8235F5,
|
||||
0x2EBB44,
|
||||
0x84E99C,
|
||||
0x7026B4,
|
||||
0x5F7E41,
|
||||
0x3991D6,
|
||||
0x398353,
|
||||
0x39F49C,
|
||||
0x845F8B,
|
||||
0xBDF928,
|
||||
0x3B1FF8,
|
||||
0x97FFDE,
|
||||
0x05980F,
|
||||
0xEF2F11,
|
||||
0x8B5A0A,
|
||||
0x6D1F6D,
|
||||
0x367ECF,
|
||||
0x27CB09,
|
||||
0xB74F46,
|
||||
0x3F669E,
|
||||
0x5FEA2D,
|
||||
0x7527BA,
|
||||
0xC7EBE5,
|
||||
0xF17B3D,
|
||||
0x0739F7,
|
||||
0x8A5292,
|
||||
0xEA6BFB,
|
||||
0x5FB11F,
|
||||
0x8D5D08,
|
||||
0x560330,
|
||||
0x46FC7B,
|
||||
0x6BABF0,
|
||||
0xCFBC20,
|
||||
0x9AF436,
|
||||
0x1DA9E3,
|
||||
0x91615E,
|
||||
0xE61B08,
|
||||
0x659985,
|
||||
0x5F14A0,
|
||||
0x68408D,
|
||||
0xFFD880,
|
||||
0x4D7327,
|
||||
0x310606,
|
||||
0x1556CA,
|
||||
0x73A8C9,
|
||||
0x60E27B,
|
||||
0xC08C6B,
|
||||
};
|
||||
|
||||
static const int npio2_hw[] = {
|
||||
0x3FF921FB,
|
||||
0x400921FB,
|
||||
0x4012D97C,
|
||||
0x401921FB,
|
||||
0x401F6A7A,
|
||||
0x4022D97C,
|
||||
0x4025FDBB,
|
||||
0x402921FB,
|
||||
0x402C463A,
|
||||
0x402F6A7A,
|
||||
0x4031475C,
|
||||
0x4032D97C,
|
||||
0x40346B9C,
|
||||
0x4035FDBB,
|
||||
0x40378FDB,
|
||||
0x403921FB,
|
||||
0x403AB41B,
|
||||
0x403C463A,
|
||||
0x403DD85A,
|
||||
0x403F6A7A,
|
||||
0x40407E4C,
|
||||
0x4041475C,
|
||||
0x4042106C,
|
||||
0x4042D97C,
|
||||
0x4043A28C,
|
||||
0x40446B9C,
|
||||
0x404534AC,
|
||||
0x4045FDBB,
|
||||
0x4046C6CB,
|
||||
0x40478FDB,
|
||||
0x404858EB,
|
||||
0x404921FB,
|
||||
};
|
||||
|
||||
/*
|
||||
* invpio2: 53 bits of 2/pi
|
||||
* pio2_1: first 33 bit of pi/2
|
||||
* pio2_1t: pi/2 - pio2_1
|
||||
* pio2_2: second 33 bit of pi/2
|
||||
* pio2_2t: pi/2 - (pio2_1+pio2_2)
|
||||
* pio2_3: third 33 bit of pi/2
|
||||
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
|
||||
*/
|
||||
|
||||
static const double
|
||||
zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
||||
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
||||
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
||||
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
|
||||
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
|
||||
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
|
||||
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
|
||||
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
|
||||
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
|
||||
|
||||
int __fdlibm_rem_pio2(double x, double* y) {
|
||||
double z, w, t, r, fn;
|
||||
double tx[3];
|
||||
int e0, i, j, nx, n, ix, hx;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix <= 0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
|
||||
{
|
||||
y[0] = x;
|
||||
y[1] = 0;
|
||||
return 0;
|
||||
}
|
||||
if(ix < 0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
|
||||
if(hx > 0) {
|
||||
z = x - pio2_1;
|
||||
if(ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */
|
||||
y[0] = z - pio2_1t;
|
||||
y[1] = (z - y[0]) - pio2_1t;
|
||||
} else { /* near pi/2, use 33+33+53 bit pi */
|
||||
z -= pio2_2;
|
||||
y[0] = z - pio2_2t;
|
||||
y[1] = (z - y[0]) - pio2_2t;
|
||||
}
|
||||
return 1;
|
||||
} else { /* negative x */
|
||||
z = x + pio2_1;
|
||||
if(ix != 0x3ff921fb) { /* 33+53 bit pi is good enough */
|
||||
y[0] = z + pio2_1t;
|
||||
y[1] = (z - y[0]) + pio2_1t;
|
||||
} else { /* near pi/2, use 33+33+53 bit pi */
|
||||
z += pio2_2;
|
||||
y[0] = z + pio2_2t;
|
||||
y[1] = (z - y[0]) + pio2_2t;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
if(ix <= 0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
|
||||
t = fabs(x);
|
||||
n = (int)(t * invpio2 + half);
|
||||
fn = (double)n;
|
||||
r = t - fn * pio2_1;
|
||||
w = fn * pio2_1t; /* 1st round good to 85 bit */
|
||||
if(n < 32 && ix != npio2_hw[n - 1]) {
|
||||
y[0] = r - w; /* quick check no cancellation */
|
||||
} else {
|
||||
j = ix >> 20;
|
||||
y[0] = r - w;
|
||||
i = j - (((__HI(y[0])) >> 20) & 0x7ff);
|
||||
if(i > 16) { /* 2nd iteration needed, good to 118 */
|
||||
t = r;
|
||||
w = fn * pio2_2;
|
||||
r = t - w;
|
||||
w = fn * pio2_2t - ((t - r) - w);
|
||||
y[0] = r - w;
|
||||
i = j - (((__HI(y[0])) >> 20) & 0x7ff);
|
||||
if(i > 49) { /* 3rd iteration need, 151 bits acc */
|
||||
t = r; /* will cover all possible cases */
|
||||
w = fn * pio2_3;
|
||||
r = t - w;
|
||||
w = fn * pio2_3t - ((t - r) - w);
|
||||
y[0] = r - w;
|
||||
}
|
||||
}
|
||||
}
|
||||
y[1] = (r - y[0]) - w;
|
||||
if(hx < 0) {
|
||||
y[0] = -y[0];
|
||||
y[1] = -y[1];
|
||||
return -n;
|
||||
} else
|
||||
return n;
|
||||
}
|
||||
/*
|
||||
* all other (large) arguments
|
||||
*/
|
||||
if(ix >= 0x7ff00000) { /* x is inf or NaN */
|
||||
y[0] = y[1] = x - x;
|
||||
return 0;
|
||||
}
|
||||
/* set z = scalbn(|x|,ilogb(x)-23) */
|
||||
__LO(z) = __LO(x);
|
||||
e0 = (ix >> 20) - 1046; /* e0 = ilogb(z)-23; */
|
||||
__HI(z) = ix - (e0 << 20);
|
||||
for(i = 0; i < 2; i++) {
|
||||
tx[i] = (double)((int)(z));
|
||||
z = (z - tx[i]) * two24;
|
||||
}
|
||||
tx[2] = z;
|
||||
nx = 3;
|
||||
while(tx[nx - 1] == zero) nx--; /* skip zero term */
|
||||
n = __fdlibm_kernel_rem_pio2(tx, y, e0, nx, 2, two_over_pi);
|
||||
if(hx < 0) {
|
||||
y[0] = -y[0];
|
||||
y[1] = -y[1];
|
||||
return -n;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
65
external/fdlibm/e_remainder.c
vendored
Normal file
65
external/fdlibm/e_remainder.c
vendored
Normal file
@@ -0,0 +1,65 @@
|
||||
|
||||
/* @(#)e_remainder.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_remainder(x,p)
|
||||
* Return :
|
||||
* returns x REM p = x - [x/p]*p as if in infinite
|
||||
* precise arithmetic, where [x/p] is the (infinite bit)
|
||||
* integer nearest x/p (in half way case choose the even one).
|
||||
* Method :
|
||||
* Based on fmod() return x-[x/p]chopped*p exactlp.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double zero = 0.0;
|
||||
|
||||
double __fdlibm_remainder(double x, double p) {
|
||||
int hx, hp;
|
||||
unsigned sx, lx, lp;
|
||||
double p_half;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
lx = __LO(x); /* low word of x */
|
||||
hp = __HI(p); /* high word of p */
|
||||
lp = __LO(p); /* low word of p */
|
||||
sx = hx & 0x80000000;
|
||||
hp &= 0x7fffffff;
|
||||
hx &= 0x7fffffff;
|
||||
|
||||
/* purge off exception values */
|
||||
if((hp | lp) == 0) return (x * p) / (x * p); /* p = 0 */
|
||||
if((hx >= 0x7ff00000) || /* x not finite */
|
||||
((hp >= 0x7ff00000) && /* p is NaN */
|
||||
(((hp - 0x7ff00000) | lp) != 0)))
|
||||
return (x * p) / (x * p);
|
||||
|
||||
if(hp <= 0x7fdfffff) x = __fdlibm_fmod(x, p + p); /* now x < 2p */
|
||||
if(((hx - hp) | (lx - lp)) == 0) return zero * x;
|
||||
x = fabs(x);
|
||||
p = fabs(p);
|
||||
if(hp < 0x00200000) {
|
||||
if(x + x > p) {
|
||||
x -= p;
|
||||
if(x + x >= p) x -= p;
|
||||
}
|
||||
} else {
|
||||
p_half = 0.5 * p;
|
||||
if(x > p_half) {
|
||||
x -= p;
|
||||
if(x >= p_half) x -= p;
|
||||
}
|
||||
}
|
||||
__HI(x) ^= sx;
|
||||
return x;
|
||||
}
|
||||
42
external/fdlibm/e_scalb.c
vendored
Normal file
42
external/fdlibm/e_scalb.c
vendored
Normal file
@@ -0,0 +1,42 @@
|
||||
|
||||
/* @(#)e_scalb.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* __fdlibm_scalb(x, fn) is provide for
|
||||
* passing various standard test suite. One
|
||||
* should use scalbn() instead.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
#ifdef _SCALB_INT
|
||||
double __fdlibm_scalb(double x, int fn)
|
||||
#else
|
||||
double __fdlibm_scalb(double x, double fn)
|
||||
#endif
|
||||
{
|
||||
#ifdef _SCALB_INT
|
||||
return scalbn(x, fn);
|
||||
#else
|
||||
if(isnan(x) || isnan(fn)) return x * fn;
|
||||
if(!finite(fn)) {
|
||||
if(fn > 0.0) return x * fn;
|
||||
else
|
||||
return x / (-fn);
|
||||
}
|
||||
if(rint(fn) != fn) return (fn - fn) / (fn - fn);
|
||||
if(fn > 65000.0) return scalbn(x, 65000);
|
||||
if(-fn > 65000.0) return scalbn(x, -65000);
|
||||
return scalbn(x, (int)fn);
|
||||
#endif
|
||||
}
|
||||
72
external/fdlibm/e_sinh.c
vendored
Normal file
72
external/fdlibm/e_sinh.c
vendored
Normal file
@@ -0,0 +1,72 @@
|
||||
|
||||
/* @(#)e_sinh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_sinh(x)
|
||||
* Method :
|
||||
* mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
|
||||
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
|
||||
* 2.
|
||||
* E + E/(E+1)
|
||||
* 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
|
||||
* 2
|
||||
*
|
||||
* 22 <= x <= lnovft : sinh(x) := exp(x)/2
|
||||
* lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
|
||||
* ln2ovft < x : sinh(x) := x*shugev (overflow)
|
||||
*
|
||||
* Special cases:
|
||||
* sinh(x) is |x| if x is +INF, -INF, or NaN.
|
||||
* only sinh(0)=0 is exact for finite x.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double one = 1.0, shugev = 1.0e307;
|
||||
|
||||
double __fdlibm_sinh(double x) {
|
||||
double t, w, h;
|
||||
int ix, jx;
|
||||
unsigned lx;
|
||||
|
||||
/* High word of |x|. */
|
||||
jx = __HI(x);
|
||||
ix = jx & 0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix >= 0x7ff00000) return x + x;
|
||||
|
||||
h = 0.5;
|
||||
if(jx < 0) h = -h;
|
||||
/* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
|
||||
if(ix < 0x40360000) { /* |x|<22 */
|
||||
if(ix < 0x3e300000) /* |x|<2**-28 */
|
||||
if(shugev + x > one) return x; /* sinh(tinyv) = tinyv with inexact */
|
||||
t = expm1(fabs(x));
|
||||
if(ix < 0x3ff00000) return h * (2.0 * t - t * t / (t + one));
|
||||
return h * (t + t / (t + one));
|
||||
}
|
||||
|
||||
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
|
||||
if(ix < 0x40862E42) return h * __fdlibm_exp(fabs(x));
|
||||
|
||||
/* |x| in [log(maxdouble), overflowthresold] */
|
||||
lx = *((((*(unsigned*)&one) >> 29)) + (unsigned*)&x);
|
||||
if(ix < 0x408633CE || (ix == 0x408633ce) && (lx <= (unsigned)0x8fb9f87d)) {
|
||||
w = __fdlibm_exp(0.5 * fabs(x));
|
||||
t = h * w;
|
||||
return t * w;
|
||||
}
|
||||
|
||||
/* |x| > overflowthresold, sinh(x) overflow */
|
||||
return x * shugev;
|
||||
}
|
||||
442
external/fdlibm/e_sqrt.c
vendored
Normal file
442
external/fdlibm/e_sqrt.c
vendored
Normal file
@@ -0,0 +1,442 @@
|
||||
/* @(#)e_sqrt.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_sqrt(x)
|
||||
* Return correctly rounded sqrt.
|
||||
* ------------------------------------------
|
||||
* | Use the hardware sqrt if you have one |
|
||||
* ------------------------------------------
|
||||
* Method:
|
||||
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
||||
* 1. Normalization
|
||||
* Scale x to y in [1,4) with even powers of 2:
|
||||
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
||||
* sqrt(x) = 2^k * sqrt(y)
|
||||
* 2. Bit by bit computation
|
||||
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
||||
* i 0
|
||||
* i+1 2
|
||||
* s = 2*q , and y = 2 * ( y - q ). (1)
|
||||
* i i i i
|
||||
*
|
||||
* To compute q from q , one checks whether
|
||||
* i+1 i
|
||||
*
|
||||
* -(i+1) 2
|
||||
* (q + 2 ) <= y. (2)
|
||||
* i
|
||||
* -(i+1)
|
||||
* If (2) is false, then q = q ; otherwise q = q + 2 .
|
||||
* i+1 i i+1 i
|
||||
*
|
||||
* With some algebric manipulation, it is not difficult to see
|
||||
* that (2) is equivalent to
|
||||
* -(i+1)
|
||||
* s + 2 <= y (3)
|
||||
* i i
|
||||
*
|
||||
* The advantage of (3) is that s and y can be computed by
|
||||
* i i
|
||||
* the following recurrence formula:
|
||||
* if (3) is false
|
||||
*
|
||||
* s = s , y = y ; (4)
|
||||
* i+1 i i+1 i
|
||||
*
|
||||
* otherwise,
|
||||
* -i -(i+1)
|
||||
* s = s + 2 , y = y - s - 2 (5)
|
||||
* i+1 i i+1 i i
|
||||
*
|
||||
* One may easily use induction to prove (4) and (5).
|
||||
* Note. Since the left hand side of (3) contain only i+2 bits,
|
||||
* it does not necessary to do a full (53-bit) comparison
|
||||
* in (3).
|
||||
* 3. Final rounding
|
||||
* After generating the 53 bits result, we compute one more bit.
|
||||
* Together with the remainder, we can decide whether the
|
||||
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
||||
* (it will never equal to 1/2ulp).
|
||||
* The rounding mode can be detected by checking whether
|
||||
* hugev + tinyv is equal to hugev, and whether hugev - tinyv is
|
||||
* equal to hugev for some floating point number "hugev" and "tinyv".
|
||||
*
|
||||
* Special cases:
|
||||
* sqrt(+-0) = +-0 ... exact
|
||||
* sqrt(inf) = inf
|
||||
* sqrt(-ve) = NaN ... with invalid signal
|
||||
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
||||
*
|
||||
* Other methods : see the appended file at the end of the program below.
|
||||
*---------------
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double one = 1.0, tinyv = 1.0e-300;
|
||||
|
||||
double __fdlibm_sqrt(double x) {
|
||||
double z;
|
||||
int sign = (int)0x80000000;
|
||||
unsigned r, t1, s1, ix1, q1;
|
||||
int ix0, s0, q, m, t, i;
|
||||
|
||||
ix0 = __HI(x); /* high word of x */
|
||||
ix1 = __LO(x); /* low word of x */
|
||||
|
||||
/* take care of Inf and NaN */
|
||||
if((ix0 & 0x7ff00000) == 0x7ff00000) {
|
||||
return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
|
||||
sqrt(-inf)=sNaN */
|
||||
}
|
||||
/* take care of zero */
|
||||
if(ix0 <= 0) {
|
||||
if(((ix0 & (~sign)) | ix1) == 0) return x; /* sqrt(+-0) = +-0 */
|
||||
else if(ix0 < 0)
|
||||
return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
|
||||
}
|
||||
/* normalize x */
|
||||
m = (ix0 >> 20);
|
||||
if(m == 0) { /* subnormal x */
|
||||
while(ix0 == 0) {
|
||||
m -= 21;
|
||||
ix0 |= (ix1 >> 11);
|
||||
ix1 <<= 21;
|
||||
}
|
||||
for(i = 0; (ix0 & 0x00100000) == 0; i++) ix0 <<= 1;
|
||||
m -= i - 1;
|
||||
ix0 |= (ix1 >> (32 - i));
|
||||
ix1 <<= i;
|
||||
}
|
||||
m -= 1023; /* unbias exponent */
|
||||
ix0 = (ix0 & 0x000fffff) | 0x00100000;
|
||||
if(m & 1) { /* odd m, double x to make it even */
|
||||
ix0 += ix0 + ((ix1 & sign) >> 31);
|
||||
ix1 += ix1;
|
||||
}
|
||||
m >>= 1; /* m = [m/2] */
|
||||
|
||||
/* generate sqrt(x) bit by bit */
|
||||
ix0 += ix0 + ((ix1 & sign) >> 31);
|
||||
ix1 += ix1;
|
||||
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
||||
r = 0x00200000; /* r = moving bit from right to left */
|
||||
|
||||
while(r != 0) {
|
||||
t = s0 + r;
|
||||
if(t <= ix0) {
|
||||
s0 = t + r;
|
||||
ix0 -= t;
|
||||
q += r;
|
||||
}
|
||||
ix0 += ix0 + ((ix1 & sign) >> 31);
|
||||
ix1 += ix1;
|
||||
r >>= 1;
|
||||
}
|
||||
|
||||
r = sign;
|
||||
while(r != 0) {
|
||||
t1 = s1 + r;
|
||||
t = s0;
|
||||
if((t < ix0) || ((t == ix0) && (t1 <= ix1))) {
|
||||
s1 = t1 + r;
|
||||
if(((t1 & sign) == sign) && (s1 & sign) == 0) s0 += 1;
|
||||
ix0 -= t;
|
||||
if(ix1 < t1) ix0 -= 1;
|
||||
ix1 -= t1;
|
||||
q1 += r;
|
||||
}
|
||||
ix0 += ix0 + ((ix1 & sign) >> 31);
|
||||
ix1 += ix1;
|
||||
r >>= 1;
|
||||
}
|
||||
|
||||
/* use floating add to find out rounding direction */
|
||||
if((ix0 | ix1) != 0) {
|
||||
z = one - tinyv; /* trigger inexact flag */
|
||||
if(z >= one) {
|
||||
z = one + tinyv;
|
||||
if(q1 == (unsigned)0xffffffff) {
|
||||
q1 = 0;
|
||||
q += 1;
|
||||
} else if(z > one) {
|
||||
if(q1 == (unsigned)0xfffffffe) q += 1;
|
||||
q1 += 2;
|
||||
} else
|
||||
q1 += (q1 & 1);
|
||||
}
|
||||
}
|
||||
ix0 = (q >> 1) + 0x3fe00000;
|
||||
ix1 = q1 >> 1;
|
||||
if((q & 1) == 1) ix1 |= sign;
|
||||
ix0 += (m << 20);
|
||||
__HI(z) = ix0;
|
||||
__LO(z) = ix1;
|
||||
return z;
|
||||
}
|
||||
|
||||
/*
|
||||
Other methods (use floating-point arithmetic)
|
||||
-------------
|
||||
(This is a copy of a drafted paper by Prof W. Kahan
|
||||
and K.C. Ng, written in May, 1986)
|
||||
|
||||
Two algorithms are given here to implement sqrt(x)
|
||||
(IEEE double precision arithmetic) in software.
|
||||
Both supply sqrt(x) correctly rounded. The first algorithm (in
|
||||
Section A) uses newton iterations and involves four divisions.
|
||||
The second one uses reciproot iterations to avoid division, but
|
||||
requires more multiplications. Both algorithms need the ability
|
||||
to chop results of arithmetic operations instead of round them,
|
||||
and the INEXACT flag to indicate when an arithmetic operation
|
||||
is executed exactly with no roundoff error, all part of the
|
||||
standard (IEEE 754-1985). The ability to perform shift, add,
|
||||
subtract and logical AND operations upon 32-bit words is needed
|
||||
too, though not part of the standard.
|
||||
|
||||
A. sqrt(x) by Newton Iteration
|
||||
|
||||
(1) Initial approximation
|
||||
|
||||
Let x0 and x1 be the leading and the trailing 32-bit words of
|
||||
a floating point number x (in IEEE double format) respectively
|
||||
|
||||
1 11 52 ...widths
|
||||
------------------------------------------------------
|
||||
x: |s| e | f |
|
||||
------------------------------------------------------
|
||||
msb lsb msb lsb ...order
|
||||
|
||||
|
||||
------------------------ ------------------------
|
||||
x0: |s| e | f1 | x1: | f2 |
|
||||
------------------------ ------------------------
|
||||
|
||||
By performing shifts and subtracts on x0 and x1 (both regarded
|
||||
as integers), we obtain an 8-bit approximation of sqrt(x) as
|
||||
follows.
|
||||
|
||||
k := (x0>>1) + 0x1ff80000;
|
||||
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
|
||||
Here k is a 32-bit integer and T1[] is an integer array containing
|
||||
correction terms. Now magically the floating value of y (y's
|
||||
leading 32-bit word is y0, the value of its trailing word is 0)
|
||||
approximates sqrt(x) to almost 8-bit.
|
||||
|
||||
Value of T1:
|
||||
static int T1[32]= {
|
||||
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
|
||||
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
|
||||
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
|
||||
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
|
||||
|
||||
(2) Iterative refinement
|
||||
|
||||
Apply Heron's rule three times to y, we have y approximates
|
||||
sqrt(x) to within 1 ulp (Unit in the Last Place):
|
||||
|
||||
y := (y+x/y)/2 ... almost 17 sig. bits
|
||||
y := (y+x/y)/2 ... almost 35 sig. bits
|
||||
y := y-(y-x/y)/2 ... within 1 ulp
|
||||
|
||||
|
||||
Remark 1.
|
||||
Another way to improve y to within 1 ulp is:
|
||||
|
||||
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
|
||||
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
|
||||
|
||||
2
|
||||
(x-y )*y
|
||||
y := y + 2* ---------- ...within 1 ulp
|
||||
2
|
||||
3y + x
|
||||
|
||||
|
||||
This formula has one division fewer than the one above; however,
|
||||
it requires more multiplications and additions. Also x must be
|
||||
scaled in advance to avoid spurious overflow in evaluating the
|
||||
expression 3y*y+x. Hence it is not recommended uless division
|
||||
is slow. If division is very slow, then one should use the
|
||||
reciproot algorithm given in section B.
|
||||
|
||||
(3) Final adjustment
|
||||
|
||||
By twiddling y's last bit it is possible to force y to be
|
||||
correctly rounded according to the prevailing rounding mode
|
||||
as follows. Let r and i be copies of the rounding mode and
|
||||
inexact flag before entering the square root program. Also we
|
||||
use the expression y+-ulp for the next representable floating
|
||||
numbers (up and down) of y. Note that y+-ulp = either fixed
|
||||
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
||||
mode.
|
||||
|
||||
I := FALSE; ... reset INEXACT flag I
|
||||
R := RZ; ... set rounding mode to round-toward-zero
|
||||
z := x/y; ... chopped quotient, possibly inexact
|
||||
If(not I) then { ... if the quotient is exact
|
||||
if(z=y) {
|
||||
I := i; ... restore inexact flag
|
||||
R := r; ... restore rounded mode
|
||||
return sqrt(x):=y.
|
||||
} else {
|
||||
z := z - ulp; ... special rounding
|
||||
}
|
||||
}
|
||||
i := TRUE; ... sqrt(x) is inexact
|
||||
If (r=RN) then z=z+ulp ... rounded-to-nearest
|
||||
If (r=RP) then { ... round-toward-+inf
|
||||
y = y+ulp; z=z+ulp;
|
||||
}
|
||||
y := y+z; ... chopped sum
|
||||
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
|
||||
I := i; ... restore inexact flag
|
||||
R := r; ... restore rounded mode
|
||||
return sqrt(x):=y.
|
||||
|
||||
(4) Special cases
|
||||
|
||||
Square root of +inf, +-0, or NaN is itself;
|
||||
Square root of a negative number is NaN with invalid signal.
|
||||
|
||||
|
||||
B. sqrt(x) by Reciproot Iteration
|
||||
|
||||
(1) Initial approximation
|
||||
|
||||
Let x0 and x1 be the leading and the trailing 32-bit words of
|
||||
a floating point number x (in IEEE double format) respectively
|
||||
(see section A). By performing shifs and subtracts on x0 and y0,
|
||||
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
|
||||
|
||||
k := 0x5fe80000 - (x0>>1);
|
||||
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
|
||||
|
||||
Here k is a 32-bit integer and T2[] is an integer array
|
||||
containing correction terms. Now magically the floating
|
||||
value of y (y's leading 32-bit word is y0, the value of
|
||||
its trailing word y1 is set to zero) approximates 1/sqrt(x)
|
||||
to almost 7.8-bit.
|
||||
|
||||
Value of T2:
|
||||
static int T2[64]= {
|
||||
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
|
||||
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
|
||||
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
|
||||
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
|
||||
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
|
||||
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
|
||||
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
|
||||
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
|
||||
|
||||
(2) Iterative refinement
|
||||
|
||||
Apply Reciproot iteration three times to y and multiply the
|
||||
result by x to get an approximation z that matches sqrt(x)
|
||||
to about 1 ulp. To be exact, we will have
|
||||
-1ulp < sqrt(x)-z<1.0625ulp.
|
||||
|
||||
... set rounding mode to Round-to-nearest
|
||||
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
|
||||
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
|
||||
... special arrangement for better accuracy
|
||||
z := x*y ... 29 bits to sqrt(x), with z*y<1
|
||||
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
|
||||
|
||||
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
|
||||
(a) the term z*y in the final iteration is always less than 1;
|
||||
(b) the error in the final result is biased upward so that
|
||||
-1 ulp < sqrt(x) - z < 1.0625 ulp
|
||||
instead of |sqrt(x)-z|<1.03125ulp.
|
||||
|
||||
(3) Final adjustment
|
||||
|
||||
By twiddling y's last bit it is possible to force y to be
|
||||
correctly rounded according to the prevailing rounding mode
|
||||
as follows. Let r and i be copies of the rounding mode and
|
||||
inexact flag before entering the square root program. Also we
|
||||
use the expression y+-ulp for the next representable floating
|
||||
numbers (up and down) of y. Note that y+-ulp = either fixed
|
||||
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
||||
mode.
|
||||
|
||||
R := RZ; ... set rounding mode to round-toward-zero
|
||||
switch(r) {
|
||||
case RN: ... round-to-nearest
|
||||
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
|
||||
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
|
||||
break;
|
||||
case RZ:case RM: ... round-to-zero or round-to--inf
|
||||
R:=RP; ... reset rounding mod to round-to-+inf
|
||||
if(x<z*z ... rounded up) z = z - ulp; else
|
||||
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
|
||||
break;
|
||||
case RP: ... round-to-+inf
|
||||
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
|
||||
if(x>z*z ...chopped) z = z+ulp;
|
||||
break;
|
||||
}
|
||||
|
||||
Remark 3. The above comparisons can be done in fixed point. For
|
||||
example, to compare x and w=z*z chopped, it suffices to compare
|
||||
x1 and w1 (the trailing parts of x and w), regarding them as
|
||||
two's complement integers.
|
||||
|
||||
...Is z an exact square root?
|
||||
To determine whether z is an exact square root of x, let z1 be the
|
||||
trailing part of z, and also let x0 and x1 be the leading and
|
||||
trailing parts of x.
|
||||
|
||||
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
|
||||
I := 1; ... Raise Inexact flag: z is not exact
|
||||
else {
|
||||
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
|
||||
k := z1 >> 26; ... get z's 25-th and 26-th
|
||||
fraction bits
|
||||
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
|
||||
}
|
||||
R:= r ... restore rounded mode
|
||||
return sqrt(x):=z.
|
||||
|
||||
If multiplication is cheaper then the foregoing red tape, the
|
||||
Inexact flag can be evaluated by
|
||||
|
||||
I := i;
|
||||
I := (z*z!=x) or I.
|
||||
|
||||
Note that z*z can overwrite I; this value must be sensed if it is
|
||||
True.
|
||||
|
||||
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
|
||||
zero.
|
||||
|
||||
--------------------
|
||||
z1: | f2 |
|
||||
--------------------
|
||||
bit 31 bit 0
|
||||
|
||||
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
|
||||
or even of logb(x) have the following relations:
|
||||
|
||||
-------------------------------------------------
|
||||
bit 27,26 of z1 bit 1,0 of x1 logb(x)
|
||||
-------------------------------------------------
|
||||
00 00 odd and even
|
||||
01 01 even
|
||||
10 10 odd
|
||||
10 00 even
|
||||
11 01 even
|
||||
-------------------------------------------------
|
||||
|
||||
(4) Special cases (see (4) of Section A).
|
||||
|
||||
*/
|
||||
82
external/fdlibm/k_cos.c
vendored
Normal file
82
external/fdlibm/k_cos.c
vendored
Normal file
@@ -0,0 +1,82 @@
|
||||
|
||||
/* @(#)k_cos.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* __fdlibm_kernel_cos( x, y )
|
||||
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
|
||||
* 3. cos(x) is approximated by a polynomial of degree 14 on
|
||||
* [0,pi/4]
|
||||
* 4 14
|
||||
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
|
||||
* where the remez error is
|
||||
*
|
||||
* | 2 4 6 8 10 12 14 | -58
|
||||
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
|
||||
* | |
|
||||
*
|
||||
* 4 6 8 10 12 14
|
||||
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
|
||||
* cos(x) = 1 - x*x/2 + r
|
||||
* since cos(x+y) ~ cos(x) - sin(x)*y
|
||||
* ~ cos(x) - x*y,
|
||||
* a correction term is necessary in cos(x) and hence
|
||||
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
|
||||
* For better accuracy when x > 0.3, let qx = |x|/4 with
|
||||
* the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
|
||||
* Then
|
||||
* cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
|
||||
* Note that 1-qx and (x*x/2-qx) is EXACT here, and the
|
||||
* magnitude of the latter is at least a quarter of x*x/2,
|
||||
* thus, reducing the rounding error in the subtraction.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
|
||||
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
|
||||
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
|
||||
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
|
||||
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
|
||||
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
|
||||
|
||||
double __fdlibm_kernel_cos(double x, double y) {
|
||||
double a, hz, z, r, qx;
|
||||
int ix;
|
||||
ix = __HI(x) & 0x7fffffff; /* ix = |x|'s high word*/
|
||||
if(ix < 0x3e400000) { /* if x < 2**27 */
|
||||
if(((int)x) == 0) return one; /* generate inexact */
|
||||
}
|
||||
z = x * x;
|
||||
r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
|
||||
if(ix < 0x3FD33333) /* if |x| < 0.3 */
|
||||
return one - (0.5 * z - (z * r - x * y));
|
||||
else {
|
||||
if(ix > 0x3fe90000) { /* x > 0.78125 */
|
||||
qx = 0.28125;
|
||||
} else {
|
||||
__HI(qx) = ix - 0x00200000; /* x/4 */
|
||||
__LO(qx) = 0;
|
||||
}
|
||||
hz = 0.5 * z - qx;
|
||||
a = one - qx;
|
||||
return a - (hz - (z * r - x * y));
|
||||
}
|
||||
}
|
||||
318
external/fdlibm/k_rem_pio2.c
vendored
Normal file
318
external/fdlibm/k_rem_pio2.c
vendored
Normal file
@@ -0,0 +1,318 @@
|
||||
|
||||
/* @(#)k_rem_pio2.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* __fdlibm_kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
||||
* double x[],y[]; int e0,nx,prec; int ipio2[];
|
||||
*
|
||||
* __fdlibm_kernel_rem_pio2 return the last three digits of N with
|
||||
* y = x - N*pi/2
|
||||
* so that |y| < pi/2.
|
||||
*
|
||||
* The method is to compute the integer (mod 8) and fraction parts of
|
||||
* (2/pi)*x without doing the full multiplication. In general we
|
||||
* skip the part of the product that are known to be a hugev integer (
|
||||
* more accurately, = 0 mod 8 ). Thus the number of operations are
|
||||
* independent of the exponent of the input.
|
||||
*
|
||||
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
||||
*
|
||||
* Input parameters:
|
||||
* x[] The input value (must be positive) is broken into nx
|
||||
* pieces of 24-bit integers in double precision format.
|
||||
* x[i] will be the i-th 24 bit of x. The scaled exponent
|
||||
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
||||
* match x's up to 24 bits.
|
||||
*
|
||||
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
||||
* e0 = ilogb(z)-23
|
||||
* z = scalbn(z,-e0)
|
||||
* for i = 0,1,2
|
||||
* x[i] = floor(z)
|
||||
* z = (z-x[i])*2**24
|
||||
*
|
||||
*
|
||||
* y[] ouput result in an array of double precision numbers.
|
||||
* The dimension of y[] is:
|
||||
* 24-bit precision 1
|
||||
* 53-bit precision 2
|
||||
* 64-bit precision 2
|
||||
* 113-bit precision 3
|
||||
* The actual value is the sum of them. Thus for 113-bit
|
||||
* precison, one may have to do something like:
|
||||
*
|
||||
* long double t,w,r_head, r_tail;
|
||||
* t = (long double)y[2] + (long double)y[1];
|
||||
* w = (long double)y[0];
|
||||
* r_head = t+w;
|
||||
* r_tail = w - (r_head - t);
|
||||
*
|
||||
* e0 The exponent of x[0]
|
||||
*
|
||||
* nx dimension of x[]
|
||||
*
|
||||
* prec an integer indicating the precision:
|
||||
* 0 24 bits (single)
|
||||
* 1 53 bits (double)
|
||||
* 2 64 bits (extended)
|
||||
* 3 113 bits (quad)
|
||||
*
|
||||
* ipio2[]
|
||||
* integer array, contains the (24*i)-th to (24*i+23)-th
|
||||
* bit of 2/pi after binary point. The corresponding
|
||||
* floating value is
|
||||
*
|
||||
* ipio2[i] * 2^(-24(i+1)).
|
||||
*
|
||||
* External function:
|
||||
* double scalbn(), floor();
|
||||
*
|
||||
*
|
||||
* Here is the description of some local variables:
|
||||
*
|
||||
* jk jk+1 is the initial number of terms of ipio2[] needed
|
||||
* in the computation. The recommended value is 2,3,4,
|
||||
* 6 for single, double, extended,and quad.
|
||||
*
|
||||
* jz local integer variable indicating the number of
|
||||
* terms of ipio2[] used.
|
||||
*
|
||||
* jx nx - 1
|
||||
*
|
||||
* jv index for pointing to the suitable ipio2[] for the
|
||||
* computation. In general, we want
|
||||
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
||||
* is an integer. Thus
|
||||
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
||||
* Hence jv = max(0,(e0-3)/24).
|
||||
*
|
||||
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
||||
*
|
||||
* q[] double array with integral value, representing the
|
||||
* 24-bits chunk of the product of x and 2/pi.
|
||||
*
|
||||
* q0 the corresponding exponent of q[0]. Note that the
|
||||
* exponent for q[i] would be q0-24*i.
|
||||
*
|
||||
* PIo2[] double precision array, obtained by cutting pi/2
|
||||
* into 24 bits chunks.
|
||||
*
|
||||
* f[] ipio2[] in floating point
|
||||
*
|
||||
* iq[] integer array by breaking up q[] in 24-bits chunk.
|
||||
*
|
||||
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
||||
*
|
||||
* ih integer. If >0 it indicates q[] is >= 0.5, hence
|
||||
* it also indicates the *sign* of the result.
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const int init_jk[] = {2, 3, 4, 6}; /* initial value for jk */
|
||||
|
||||
static const double PIo2[] = {
|
||||
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
||||
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
||||
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
||||
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
||||
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
||||
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
||||
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
||||
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
||||
};
|
||||
|
||||
static const double
|
||||
zero = 0.0,
|
||||
one = 1.0,
|
||||
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
||||
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
|
||||
|
||||
int __fdlibm_kernel_rem_pio2(double* x, double* y, int e0, int nx, int prec, const int* ipio2) {
|
||||
int jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
|
||||
double z, fw, f[20], fq[20], q[20];
|
||||
|
||||
/* initialize jk*/
|
||||
jk = init_jk[prec];
|
||||
jp = jk;
|
||||
|
||||
/* determine jx,jv,q0, note that 3>q0 */
|
||||
jx = nx - 1;
|
||||
jv = (e0 - 3) / 24;
|
||||
if(jv < 0) jv = 0;
|
||||
q0 = e0 - 24 * (jv + 1);
|
||||
|
||||
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
||||
j = jv - jx;
|
||||
m = jx + jk;
|
||||
for(i = 0; i <= m; i++, j++) f[i] = (j < 0) ? zero : (double)ipio2[j];
|
||||
|
||||
/* compute q[0],q[1],...q[jk] */
|
||||
for(i = 0; i <= jk; i++) {
|
||||
for(j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j];
|
||||
q[i] = fw;
|
||||
}
|
||||
|
||||
jz = jk;
|
||||
recompute:
|
||||
/* distill q[] into iq[] reversingly */
|
||||
for(i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
|
||||
fw = (double)((int)(twon24 * z));
|
||||
iq[i] = (int)(z - two24 * fw);
|
||||
z = q[j - 1] + fw;
|
||||
}
|
||||
|
||||
/* compute n */
|
||||
z = scalbn(z, q0); /* actual value of z */
|
||||
z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
|
||||
n = (int)z;
|
||||
z -= (double)n;
|
||||
ih = 0;
|
||||
if(q0 > 0) { /* need iq[jz-1] to determine n */
|
||||
i = (iq[jz - 1] >> (24 - q0));
|
||||
n += i;
|
||||
iq[jz - 1] -= i << (24 - q0);
|
||||
ih = iq[jz - 1] >> (23 - q0);
|
||||
} else if(q0 == 0)
|
||||
ih = iq[jz - 1] >> 23;
|
||||
else if(z >= 0.5)
|
||||
ih = 2;
|
||||
|
||||
if(ih > 0) { /* q > 0.5 */
|
||||
n += 1;
|
||||
carry = 0;
|
||||
for(i = 0; i < jz; i++) { /* compute 1-q */
|
||||
j = iq[i];
|
||||
if(carry == 0) {
|
||||
if(j != 0) {
|
||||
carry = 1;
|
||||
iq[i] = 0x1000000 - j;
|
||||
}
|
||||
} else
|
||||
iq[i] = 0xffffff - j;
|
||||
}
|
||||
if(q0 > 0) { /* rare case: chance is 1 in 12 */
|
||||
switch(q0) {
|
||||
case 1:
|
||||
iq[jz - 1] &= 0x7fffff;
|
||||
break;
|
||||
case 2:
|
||||
iq[jz - 1] &= 0x3fffff;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if(ih == 2) {
|
||||
z = one - z;
|
||||
if(carry != 0) z -= scalbn(one, q0);
|
||||
}
|
||||
}
|
||||
|
||||
/* check if recomputation is needed */
|
||||
if(z == zero) {
|
||||
j = 0;
|
||||
for(i = jz - 1; i >= jk; i--) j |= iq[i];
|
||||
if(j == 0) { /* need recomputation */
|
||||
for(k = 1; iq[jk - k] == 0; k++); /* k = no. of terms needed */
|
||||
|
||||
for(i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */
|
||||
f[jx + i] = (double)ipio2[jv + i];
|
||||
for(j = 0, fw = 0.0; j <= jx; j++) fw += x[j] * f[jx + i - j];
|
||||
q[i] = fw;
|
||||
}
|
||||
jz += k;
|
||||
goto recompute;
|
||||
}
|
||||
}
|
||||
|
||||
/* chop off zero terms */
|
||||
if(z == 0.0) {
|
||||
jz -= 1;
|
||||
q0 -= 24;
|
||||
while(iq[jz] == 0) {
|
||||
jz--;
|
||||
q0 -= 24;
|
||||
}
|
||||
} else { /* break z into 24-bit if necessary */
|
||||
z = scalbn(z, -q0);
|
||||
if(z >= two24) {
|
||||
fw = (double)((int)(twon24 * z));
|
||||
iq[jz] = (int)(z - two24 * fw);
|
||||
jz += 1;
|
||||
q0 += 24;
|
||||
iq[jz] = (int)fw;
|
||||
} else
|
||||
iq[jz] = (int)z;
|
||||
}
|
||||
|
||||
/* convert integer "bit" chunk to floating-point value */
|
||||
fw = scalbn(one, q0);
|
||||
for(i = jz; i >= 0; i--) {
|
||||
q[i] = fw * (double)iq[i];
|
||||
fw *= twon24;
|
||||
}
|
||||
|
||||
/* compute PIo2[0,...,jp]*q[jz,...,0] */
|
||||
for(i = jz; i >= 0; i--) {
|
||||
for(fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) fw += PIo2[k] * q[i + k];
|
||||
fq[jz - i] = fw;
|
||||
}
|
||||
|
||||
/* compress fq[] into y[] */
|
||||
switch(prec) {
|
||||
case 0:
|
||||
fw = 0.0;
|
||||
for(i = jz; i >= 0; i--) fw += fq[i];
|
||||
y[0] = (ih == 0) ? fw : -fw;
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
fw = 0.0;
|
||||
for(i = jz; i >= 0; i--) fw += fq[i];
|
||||
y[0] = (ih == 0) ? fw : -fw;
|
||||
fw = fq[0] - fw;
|
||||
for(i = 1; i <= jz; i++) fw += fq[i];
|
||||
y[1] = (ih == 0) ? fw : -fw;
|
||||
break;
|
||||
case 3: /* painful */
|
||||
for(i = jz; i > 0; i--) {
|
||||
fw = fq[i - 1] + fq[i];
|
||||
fq[i] += fq[i - 1] - fw;
|
||||
fq[i - 1] = fw;
|
||||
}
|
||||
for(i = jz; i > 1; i--) {
|
||||
fw = fq[i - 1] + fq[i];
|
||||
fq[i] += fq[i - 1] - fw;
|
||||
fq[i - 1] = fw;
|
||||
}
|
||||
for(fw = 0.0, i = jz; i >= 2; i--) fw += fq[i];
|
||||
if(ih == 0) {
|
||||
y[0] = fq[0];
|
||||
y[1] = fq[1];
|
||||
y[2] = fw;
|
||||
} else {
|
||||
y[0] = -fq[0];
|
||||
y[1] = -fq[1];
|
||||
y[2] = -fw;
|
||||
}
|
||||
}
|
||||
return n & 7;
|
||||
}
|
||||
67
external/fdlibm/k_sin.c
vendored
Normal file
67
external/fdlibm/k_sin.c
vendored
Normal file
@@ -0,0 +1,67 @@
|
||||
|
||||
/* @(#)k_sin.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_kernel_sin( x, y, iy)
|
||||
* kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
|
||||
* 3. sin(x) is approximated by a polynomial of degree 13 on
|
||||
* [0,pi/4]
|
||||
* 3 13
|
||||
* sin(x) ~ x + S1*x + ... + S6*x
|
||||
* where
|
||||
*
|
||||
* |sin(x) 2 4 6 8 10 12 | -58
|
||||
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* 4. sin(x+y) = sin(x) + sin'(x')*y
|
||||
* ~ sin(x) + (1-x*x/2)*y
|
||||
* For better accuracy, let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
|
||||
* then 3 2
|
||||
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
|
||||
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
|
||||
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
|
||||
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
|
||||
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
|
||||
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
|
||||
|
||||
double __fdlibm_kernel_sin(double x, double y, int iy) {
|
||||
double z, r, v;
|
||||
int ix;
|
||||
ix = __HI(x) & 0x7fffffff; /* high word of x */
|
||||
if(ix < 0x3e400000) /* |x| < 2**-27 */
|
||||
{
|
||||
if((int)x == 0) return x;
|
||||
} /* generate inexact */
|
||||
z = x * x;
|
||||
v = z * x;
|
||||
r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
|
||||
if(iy == 0) return x + v * (S1 + z * r);
|
||||
else
|
||||
return x - ((z * (half * y - v * r) - y) - v * S1);
|
||||
}
|
||||
146
external/fdlibm/k_tan.c
vendored
Normal file
146
external/fdlibm/k_tan.c
vendored
Normal file
@@ -0,0 +1,146 @@
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* INDENT OFF */
|
||||
/* __fdlibm_kernel_tan( x, y, k )
|
||||
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||||
* Input y is the tail of x.
|
||||
* Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
|
||||
*
|
||||
* Algorithm
|
||||
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
||||
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
|
||||
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
||||
* [0,0.67434]
|
||||
* 3 27
|
||||
* tan(x) ~ x + T1*x + ... + T13*x
|
||||
* where
|
||||
*
|
||||
* |tan(x) 2 4 26 | -59.2
|
||||
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
||||
* | x |
|
||||
*
|
||||
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
||||
* ~ tan(x) + (1+x*x)*y
|
||||
* Therefore, for better accuracy in computing tan(x+y), let
|
||||
* 3 2 2 2 2
|
||||
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
||||
* then
|
||||
* 3 2
|
||||
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
||||
*
|
||||
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
||||
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
||||
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double xxx[] = {
|
||||
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
|
||||
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
|
||||
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
|
||||
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
|
||||
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
|
||||
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
|
||||
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
|
||||
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
|
||||
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
|
||||
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
|
||||
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
|
||||
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
|
||||
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
|
||||
/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
|
||||
/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
|
||||
/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
|
||||
};
|
||||
#define one xxx[13]
|
||||
#define pio4 xxx[14]
|
||||
#define pio4lo xxx[15]
|
||||
#define T xxx
|
||||
/* INDENT ON */
|
||||
|
||||
double
|
||||
__fdlibm_kernel_tan(double x, double y, int iy) {
|
||||
double z, r, v, w, s;
|
||||
int ix, hx;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
ix = hx & 0x7fffffff; /* high word of |x| */
|
||||
if(ix < 0x3e300000) { /* x < 2**-28 */
|
||||
if((int)x == 0) { /* generate inexact */
|
||||
if(((ix | __LO(x)) | (iy + 1)) == 0)
|
||||
return one / fabs(x);
|
||||
else {
|
||||
if(iy == 1)
|
||||
return x;
|
||||
else { /* compute -1 / (x+y) carefully */
|
||||
double a, t;
|
||||
|
||||
z = w = x + y;
|
||||
__LO(z) = 0;
|
||||
v = y - (z - x);
|
||||
t = a = -one / w;
|
||||
__LO(t) = 0;
|
||||
s = one + t * z;
|
||||
return t + a * (s + t * v);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if(ix >= 0x3FE59428) { /* |x| >= 0.6744 */
|
||||
if(hx < 0) {
|
||||
x = -x;
|
||||
y = -y;
|
||||
}
|
||||
z = pio4 - x;
|
||||
w = pio4lo - y;
|
||||
x = z + w;
|
||||
y = 0.0;
|
||||
}
|
||||
z = x * x;
|
||||
w = z * z;
|
||||
/*
|
||||
* Break x^5*(T[1]+x^2*T[2]+...) into
|
||||
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
||||
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
||||
*/
|
||||
r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
|
||||
w * T[11]))));
|
||||
v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
|
||||
w * T[12])))));
|
||||
s = z * x;
|
||||
r = y + z * (s * (r + v) + y);
|
||||
r += T[0] * s;
|
||||
w = x + r;
|
||||
if(ix >= 0x3FE59428) {
|
||||
v = (double)iy;
|
||||
return (double)(1 - ((hx >> 30) & 2)) *
|
||||
(v - 2.0 * (x - (w * w / (w + v) - r)));
|
||||
}
|
||||
if(iy == 1)
|
||||
return w;
|
||||
else {
|
||||
/*
|
||||
* if allow error up to 2 ulp, simply return
|
||||
* -1.0 / (x+r) here
|
||||
*/
|
||||
/* compute -1.0 / (x+r) accurately */
|
||||
double a, t;
|
||||
z = w;
|
||||
__LO(z) = 0;
|
||||
v = r - (z - x); /* z+v = r+x */
|
||||
t = a = -1.0 / w; /* a = -1.0/w */
|
||||
__LO(t) = 0;
|
||||
s = 1.0 + t * z;
|
||||
return t + a * (s + t * v);
|
||||
}
|
||||
}
|
||||
245
external/fdlibm/math.h
vendored
Normal file
245
external/fdlibm/math.h
vendored
Normal file
@@ -0,0 +1,245 @@
|
||||
|
||||
/* @(#)fdlibm.h 1.5 04/04/22 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#ifndef _MATH_H_
|
||||
#define _MATH_H_
|
||||
|
||||
/* Sometimes it's necessary to define __LITTLE_ENDIAN explicitly
|
||||
but these catch some common cases. */
|
||||
|
||||
#if defined(__WATCOMC__) || defined(_MSC_VER) || defined(i386) || defined(i486) || defined(intel) || defined(x86) || defined(i86pc) || defined(__alpha) || defined(__osf__) || __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define __LITTLE_ENDIAN
|
||||
#endif
|
||||
|
||||
#ifdef __LITTLE_ENDIAN
|
||||
#define __HI(x) *(1 + (int*)&x)
|
||||
#define __LO(x) *(int*)&x
|
||||
#define __HIp(x) *(1 + (int*)x)
|
||||
#define __LOp(x) *(int*)x
|
||||
#else
|
||||
#define __HI(x) *(int*)&x
|
||||
#define __LO(x) *(1 + (int*)&x)
|
||||
#define __HIp(x) *(int*)x
|
||||
#define __LOp(x) *(1 + (int*)x)
|
||||
#endif
|
||||
|
||||
#define signgam fdlibm_signgam
|
||||
|
||||
#define acos fdlibm_acos
|
||||
#define asin fdlibm_asin
|
||||
#define atan fdlibm_atan
|
||||
#define atan2 fdlibm_atan2
|
||||
#define cos fdlibm_cos
|
||||
#define sin fdlibm_sin
|
||||
#define tan fdlibm_tan
|
||||
|
||||
#define cosh fdlibm_cosh
|
||||
#define sinh fdlibm_sinh
|
||||
#define tanh fdlibm_tanh
|
||||
|
||||
#define exp fdlibm_exp
|
||||
#define frexp fdlibm_frexp
|
||||
#define ldexp fdlibm_ldexp
|
||||
#define log fdlibm_log
|
||||
#define log10 fdlibm_log10
|
||||
#define modf fdlibm_modf
|
||||
|
||||
#define pow fdlibm_pow
|
||||
#define sqrt fdlibm_sqrt
|
||||
|
||||
#define ceil fdlibm_ceil
|
||||
#define fabs fdlibm_fabs
|
||||
#define floor fdlibm_floor
|
||||
#define fmod fdlibm_fmod
|
||||
|
||||
#define erf fdlibm_erf
|
||||
#define erfc fdlibm_erfc
|
||||
#define gamma fdlibm_gamma
|
||||
#define hypot fdlibm_hypot
|
||||
#define isnan fdlibm_isnan
|
||||
#define finite fdlibm_finite
|
||||
#define j0 fdlibm_j0
|
||||
#define j1 fdlibm_j1
|
||||
#define jn fdlibm_jn
|
||||
#define lgamma fdlibm_lgamma
|
||||
#define y0 fdlibm_y0
|
||||
#define y1 fdlibm_y1
|
||||
#define yn fdlibm_yn
|
||||
|
||||
#define acosh fdlibm_acosh
|
||||
#define asinh fdlibm_asinh
|
||||
#define atanh fdlibm_atanh
|
||||
#define cbrt fdlibm_cbrt
|
||||
#define logb fdlibm_logb
|
||||
#define nextafter fdlibm_nextafter
|
||||
#define remainder fdlibm_remainder
|
||||
#define scalb fdlibm_scalb
|
||||
|
||||
#define significand fdlibm_significand
|
||||
|
||||
#define copysign fdlibm_copysign
|
||||
#define ilogb fdlibm_ilogb
|
||||
#define rint fdlibm_rint
|
||||
#define scalbn fdlibm_scalbn
|
||||
|
||||
#define expm1 fdlibm_expm1
|
||||
#define log1p fdlibm_log1p
|
||||
|
||||
|
||||
/*
|
||||
* ANSI/POSIX
|
||||
*/
|
||||
|
||||
extern int signgam;
|
||||
|
||||
#define MAXFLOAT ((float)3.40282346638528860e+38)
|
||||
|
||||
#define HUGE MAXFLOAT
|
||||
|
||||
/*
|
||||
* set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
|
||||
* (one may replace the following line by "#include <values.h>")
|
||||
*/
|
||||
|
||||
#define X_TLOSS 1.41484755040568800000e+16
|
||||
|
||||
#define DOMAIN 1
|
||||
#define SING 2
|
||||
#define OVERFLOW 3
|
||||
#define UNDERFLOW 4
|
||||
#define TLOSS 5
|
||||
#define PLOSS 6
|
||||
|
||||
/*
|
||||
* ANSI/POSIX
|
||||
*/
|
||||
extern double acos(double);
|
||||
extern double asin(double);
|
||||
extern double atan(double);
|
||||
extern double atan2(double, double);
|
||||
extern double cos(double);
|
||||
extern double sin(double);
|
||||
extern double tan(double);
|
||||
|
||||
extern double cosh(double);
|
||||
extern double sinh(double);
|
||||
extern double tanh(double);
|
||||
|
||||
extern double exp(double);
|
||||
extern double frexp(double, int*);
|
||||
extern double ldexp(double, int);
|
||||
extern double log(double);
|
||||
extern double log10(double);
|
||||
extern double modf(double, double*);
|
||||
|
||||
extern double pow(double, double);
|
||||
extern double sqrt(double);
|
||||
|
||||
extern double ceil(double);
|
||||
extern double fabs(double);
|
||||
extern double floor(double);
|
||||
extern double fmod(double, double);
|
||||
|
||||
extern double erf(double);
|
||||
extern double erfc(double);
|
||||
extern double gamma(double);
|
||||
extern double hypot(double, double);
|
||||
extern int isnan(double);
|
||||
extern int finite(double);
|
||||
extern double j0(double);
|
||||
extern double j1(double);
|
||||
extern double jn(int, double);
|
||||
extern double lgamma(double);
|
||||
extern double y0(double);
|
||||
extern double y1(double);
|
||||
extern double yn(int, double);
|
||||
|
||||
extern double acosh(double);
|
||||
extern double asinh(double);
|
||||
extern double atanh(double);
|
||||
extern double cbrt(double);
|
||||
extern double logb(double);
|
||||
extern double nextafter(double, double);
|
||||
extern double remainder(double, double);
|
||||
extern double scalb(double, double);
|
||||
|
||||
/*
|
||||
* IEEE Test Vector
|
||||
*/
|
||||
extern double significand(double);
|
||||
|
||||
/*
|
||||
* Functions callable from C, intended to support IEEE arithmetic.
|
||||
*/
|
||||
extern double copysign(double, double);
|
||||
extern int ilogb(double);
|
||||
extern double rint(double);
|
||||
extern double scalbn(double, int);
|
||||
|
||||
/*
|
||||
* BSD math library entry points
|
||||
*/
|
||||
extern double expm1(double);
|
||||
extern double log1p(double);
|
||||
|
||||
/*
|
||||
* Reentrant version of gamma & lgamma; passes signgam back by reference
|
||||
* as the second argument; user must allocate space for signgam.
|
||||
*/
|
||||
#ifdef _REENTRANT
|
||||
#define gamma_r fdlibm_gamma_r
|
||||
#define lgamma_r fdlibm_lgamma_r
|
||||
|
||||
extern double gamma_r(double, int*);
|
||||
extern double lgamma_r(double, int*);
|
||||
#endif /* _REENTRANT */
|
||||
|
||||
/* ieee style elementary functions */
|
||||
extern double __fdlibm_sqrt(double);
|
||||
extern double __fdlibm_acos(double);
|
||||
extern double __fdlibm_acosh(double);
|
||||
extern double __fdlibm_log(double);
|
||||
extern double __fdlibm_atanh(double);
|
||||
extern double __fdlibm_asin(double);
|
||||
extern double __fdlibm_atan2(double, double);
|
||||
extern double __fdlibm_exp(double);
|
||||
extern double __fdlibm_cosh(double);
|
||||
extern double __fdlibm_fmod(double, double);
|
||||
extern double __fdlibm_pow(double, double);
|
||||
extern double __fdlibm_lgamma_r(double, int*);
|
||||
extern double __fdlibm_gamma_r(double, int*);
|
||||
extern double __fdlibm_lgamma(double);
|
||||
extern double __fdlibm_gamma(double);
|
||||
extern double __fdlibm_log10(double);
|
||||
extern double __fdlibm_sinh(double);
|
||||
extern double __fdlibm_hypot(double, double);
|
||||
extern double __fdlibm_j0(double);
|
||||
extern double __fdlibm_j1(double);
|
||||
extern double __fdlibm_y0(double);
|
||||
extern double __fdlibm_y1(double);
|
||||
extern double __fdlibm_jn(int, double);
|
||||
extern double __fdlibm_yn(int, double);
|
||||
extern double __fdlibm_remainder(double, double);
|
||||
extern int __fdlibm_rem_pio2(double, double*);
|
||||
#ifdef _SCALB_INT
|
||||
extern double __fdlibm_scalb(double, int);
|
||||
#else
|
||||
extern double __fdlibm_scalb(double, double);
|
||||
#endif
|
||||
|
||||
/* fdlibm kernel function */
|
||||
extern double __fdlibm_kernel_sin(double, double, int);
|
||||
extern double __fdlibm_kernel_cos(double, double);
|
||||
extern double __fdlibm_kernel_tan(double, double, int);
|
||||
extern int __fdlibm_kernel_rem_pio2(double*, double*, int, int, int, const int*);
|
||||
|
||||
#endif
|
||||
53
external/fdlibm/s_asinh.c
vendored
Normal file
53
external/fdlibm/s_asinh.c
vendored
Normal file
@@ -0,0 +1,53 @@
|
||||
|
||||
/* @(#)s_asinh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* asinh(x)
|
||||
* Method :
|
||||
* Based on
|
||||
* asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
|
||||
* we have
|
||||
* asinh(x) := x if 1+x*x=1,
|
||||
* := sign(x)*(log(x)+ln2)) for large |x|, else
|
||||
* := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
|
||||
* := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
|
||||
hugev = 1.00000000000000000000e+300;
|
||||
|
||||
double asinh(double x) {
|
||||
double t, w;
|
||||
int hx, ix;
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix >= 0x7ff00000) return x + x; /* x is inf or NaN */
|
||||
if(ix < 0x3e300000) { /* |x|<2**-28 */
|
||||
if(hugev + x > one) return x; /* return x inexact except 0 */
|
||||
}
|
||||
if(ix > 0x41b00000) { /* |x| > 2**28 */
|
||||
w = __fdlibm_log(fabs(x)) + ln2;
|
||||
} else if(ix > 0x40000000) { /* 2**28 > |x| > 2.0 */
|
||||
t = fabs(x);
|
||||
w = __fdlibm_log(2.0 * t + one / (sqrt(x * x + one) + t));
|
||||
} else { /* 2.0 > |x| > 2**-28 */
|
||||
t = x * x;
|
||||
w = log1p(fabs(x) + t / (one + sqrt(one + t)));
|
||||
}
|
||||
if(hx > 0) return w;
|
||||
else
|
||||
return -w;
|
||||
}
|
||||
119
external/fdlibm/s_atan.c
vendored
Normal file
119
external/fdlibm/s_atan.c
vendored
Normal file
@@ -0,0 +1,119 @@
|
||||
|
||||
/* @(#)s_atan.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* atan(x)
|
||||
* Method
|
||||
* 1. Reduce x to positive by atan(x) = -atan(-x).
|
||||
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
|
||||
* is further reduced to one of the following intervals and the
|
||||
* arctangent of t is evaluated by the corresponding formula:
|
||||
*
|
||||
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
|
||||
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
|
||||
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
|
||||
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
|
||||
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double atanhi[] = {
|
||||
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
|
||||
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
|
||||
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
|
||||
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
|
||||
};
|
||||
|
||||
static const double atanlo[] = {
|
||||
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
|
||||
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
|
||||
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
|
||||
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
|
||||
};
|
||||
|
||||
static const double aT[] = {
|
||||
3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
|
||||
-1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
|
||||
1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
|
||||
-1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
|
||||
9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
|
||||
-7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
|
||||
6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
|
||||
-5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
|
||||
4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
|
||||
-3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
|
||||
1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
|
||||
};
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
hugev = 1.0e300;
|
||||
|
||||
double atan(double x) {
|
||||
double w, s1, s2, z;
|
||||
int ix, hx, id;
|
||||
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix >= 0x44100000) { /* if |x| >= 2^66 */
|
||||
if(ix > 0x7ff00000 ||
|
||||
(ix == 0x7ff00000 && (__LO(x) != 0)))
|
||||
return x + x; /* NaN */
|
||||
if(hx > 0) return atanhi[3] + atanlo[3];
|
||||
else
|
||||
return -atanhi[3] - atanlo[3];
|
||||
}
|
||||
if(ix < 0x3fdc0000) { /* |x| < 0.4375 */
|
||||
if(ix < 0x3e200000) { /* |x| < 2^-29 */
|
||||
if(hugev + x > one) return x; /* raise inexact */
|
||||
}
|
||||
id = -1;
|
||||
} else {
|
||||
x = fabs(x);
|
||||
if(ix < 0x3ff30000) { /* |x| < 1.1875 */
|
||||
if(ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
|
||||
id = 0;
|
||||
x = (2.0 * x - one) / (2.0 + x);
|
||||
} else { /* 11/16<=|x|< 19/16 */
|
||||
id = 1;
|
||||
x = (x - one) / (x + one);
|
||||
}
|
||||
} else {
|
||||
if(ix < 0x40038000) { /* |x| < 2.4375 */
|
||||
id = 2;
|
||||
x = (x - 1.5) / (one + 1.5 * x);
|
||||
} else { /* 2.4375 <= |x| < 2^66 */
|
||||
id = 3;
|
||||
x = -1.0 / x;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* end of argument reduction */
|
||||
z = x * x;
|
||||
w = z * z;
|
||||
/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
|
||||
s1 = z * (aT[0] + w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10])))));
|
||||
s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9]))));
|
||||
if(id < 0) return x - x * (s1 + s2);
|
||||
else {
|
||||
z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
|
||||
return (hx < 0) ? -z : z;
|
||||
}
|
||||
}
|
||||
72
external/fdlibm/s_cbrt.c
vendored
Normal file
72
external/fdlibm/s_cbrt.c
vendored
Normal file
@@ -0,0 +1,72 @@
|
||||
|
||||
/* @(#)s_cbrt.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
/* cbrt(x)
|
||||
* Return cube root of x
|
||||
*/
|
||||
static const unsigned
|
||||
B1 = 715094163, /* B1 = (682-0.03306235651)*2**20 */
|
||||
B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
|
||||
|
||||
static const double
|
||||
C = 5.42857142857142815906e-01, /* 19/35 = 0x3FE15F15, 0xF15F15F1 */
|
||||
D = -7.05306122448979611050e-01, /* -864/1225 = 0xBFE691DE, 0x2532C834 */
|
||||
E = 1.41428571428571436819e+00, /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */
|
||||
F = 1.60714285714285720630e+00, /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */
|
||||
G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */
|
||||
|
||||
double cbrt(double x) {
|
||||
int hx;
|
||||
double r, s, t = 0.0, w;
|
||||
unsigned sign;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
sign = hx & 0x80000000; /* sign= sign(x) */
|
||||
hx ^= sign;
|
||||
if(hx >= 0x7ff00000) return (x + x); /* cbrt(NaN,INF) is itself */
|
||||
if((hx | __LO(x)) == 0)
|
||||
return (x); /* cbrt(0) is itself */
|
||||
|
||||
__HI(x) = hx; /* x <- |x| */
|
||||
/* rough cbrt to 5 bits */
|
||||
if(hx < 0x00100000) /* subnormal number */
|
||||
{
|
||||
__HI(t) = 0x43500000; /* set t= 2**54 */
|
||||
t *= x;
|
||||
__HI(t) = __HI(t) / 3 + B2;
|
||||
} else
|
||||
__HI(t) = hx / 3 + B1;
|
||||
|
||||
/* new cbrt to 23 bits, may be implemented in single precision */
|
||||
r = t * t / x;
|
||||
s = C + r * t;
|
||||
t *= G + F / (s + E + D / s);
|
||||
|
||||
/* chopped to 20 bits and make it larger than cbrt(x) */
|
||||
__LO(t) = 0;
|
||||
__HI(t) += 0x00000001;
|
||||
|
||||
/* one step newton iteration to 53 bits with error less than 0.667 ulps */
|
||||
s = t * t; /* t*t is exact */
|
||||
r = x / s;
|
||||
w = t + t;
|
||||
r = (r - t) / (w + r); /* r-s is exact */
|
||||
t = t + t * r;
|
||||
|
||||
/* retore the sign bit */
|
||||
__HI(t) |= sign;
|
||||
return (t);
|
||||
}
|
||||
75
external/fdlibm/s_ceil.c
vendored
Normal file
75
external/fdlibm/s_ceil.c
vendored
Normal file
@@ -0,0 +1,75 @@
|
||||
|
||||
/* @(#)s_ceil.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* ceil(x)
|
||||
* Return x rounded toward -inf to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to ceil(x).
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double hugev = 1.0e300;
|
||||
|
||||
double ceil(double x) {
|
||||
int i0, i1, j0;
|
||||
unsigned i, j;
|
||||
i0 = __HI(x);
|
||||
i1 = __LO(x);
|
||||
j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
|
||||
if(j0 < 20) {
|
||||
if(j0 < 0) { /* raise inexact if x != 0 */
|
||||
if(hugev + x > 0.0) { /* return 0*sign(x) if |x|<1 */
|
||||
if(i0 < 0) {
|
||||
i0 = 0x80000000;
|
||||
i1 = 0;
|
||||
} else if((i0 | i1) != 0) {
|
||||
i0 = 0x3ff00000;
|
||||
i1 = 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
i = (0x000fffff) >> j0;
|
||||
if(((i0 & i) | i1) == 0) return x; /* x is integral */
|
||||
if(hugev + x > 0.0) { /* raise inexact flag */
|
||||
if(i0 > 0) i0 += (0x00100000) >> j0;
|
||||
i0 &= (~i);
|
||||
i1 = 0;
|
||||
}
|
||||
}
|
||||
} else if(j0 > 51) {
|
||||
if(j0 == 0x400) return x + x; /* inf or NaN */
|
||||
else
|
||||
return x; /* x is integral */
|
||||
} else {
|
||||
i = ((unsigned)(0xffffffff)) >> (j0 - 20);
|
||||
if((i1 & i) == 0) return x; /* x is integral */
|
||||
if(hugev + x > 0.0) { /* raise inexact flag */
|
||||
if(i0 > 0) {
|
||||
if(j0 == 20) i0 += 1;
|
||||
else {
|
||||
j = i1 + (1 << (52 - j0));
|
||||
if(j < i1) i0 += 1; /* got a carry */
|
||||
i1 = j;
|
||||
}
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
}
|
||||
__HI(x) = i0;
|
||||
__LO(x) = i1;
|
||||
return x;
|
||||
}
|
||||
25
external/fdlibm/s_copysign.c
vendored
Normal file
25
external/fdlibm/s_copysign.c
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
|
||||
/* @(#)s_copysign.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* copysign(double x, double y)
|
||||
* copysign(x,y) returns a value with the magnitude of x and
|
||||
* with the sign bit of y.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double copysign(double x, double y) {
|
||||
__HI(x) = (__HI(x) & 0x7fffffff) | (__HI(y) & 0x80000000);
|
||||
return x;
|
||||
}
|
||||
76
external/fdlibm/s_cos.c
vendored
Normal file
76
external/fdlibm/s_cos.c
vendored
Normal file
@@ -0,0 +1,76 @@
|
||||
|
||||
/* @(#)s_cos.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* cos(x)
|
||||
* Return cosine function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __fdlibm_kernel_sin ... sine function on [-pi/4,pi/4]
|
||||
* __fdlibm_kernel_cos ... cosine function on [-pi/4,pi/4]
|
||||
* __fdlibm_kernel_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double cos(double x) {
|
||||
double y[2], z = 0.0;
|
||||
int n, ix;
|
||||
|
||||
/* High word of x. */
|
||||
ix = __HI(x);
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
ix &= 0x7fffffff;
|
||||
if(ix <= 0x3fe921fb) return __fdlibm_kernel_cos(x, z);
|
||||
|
||||
/* cos(Inf or NaN) is NaN */
|
||||
else if(ix >= 0x7ff00000)
|
||||
return x - x;
|
||||
|
||||
/* argument reduction needed */
|
||||
else {
|
||||
n = __fdlibm_rem_pio2(x, y);
|
||||
switch(n & 3) {
|
||||
case 0:
|
||||
return __fdlibm_kernel_cos(y[0], y[1]);
|
||||
case 1:
|
||||
return -__fdlibm_kernel_sin(y[0], y[1], 1);
|
||||
case 2:
|
||||
return -__fdlibm_kernel_cos(y[0], y[1]);
|
||||
default:
|
||||
return __fdlibm_kernel_sin(y[0], y[1], 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
297
external/fdlibm/s_erf.c
vendored
Normal file
297
external/fdlibm/s_erf.c
vendored
Normal file
@@ -0,0 +1,297 @@
|
||||
|
||||
/* @(#)s_erf.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* double erf(double x)
|
||||
* double erfc(double x)
|
||||
* x
|
||||
* 2 |\
|
||||
* erf(x) = --------- | exp(-t*t)dt
|
||||
* sqrt(pi) \|
|
||||
* 0
|
||||
*
|
||||
* erfc(x) = 1-erf(x)
|
||||
* Note that
|
||||
* erf(-x) = -erf(x)
|
||||
* erfc(-x) = 2 - erfc(x)
|
||||
*
|
||||
* Method:
|
||||
* 1. For |x| in [0, 0.84375]
|
||||
* erf(x) = x + x*R(x^2)
|
||||
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
|
||||
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
|
||||
* where R = P/Q where P is an odd poly of degree 8 and
|
||||
* Q is an odd poly of degree 10.
|
||||
* -57.90
|
||||
* | R - (erf(x)-x)/x | <= 2
|
||||
*
|
||||
*
|
||||
* Remark. The formula is derived by noting
|
||||
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
|
||||
* and that
|
||||
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
|
||||
* is close to one. The interval is chosen because the fix
|
||||
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
|
||||
* near 0.6174), and by some experiment, 0.84375 is chosen to
|
||||
* guarantee the error is less than one ulp for erf.
|
||||
*
|
||||
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
|
||||
* c = 0.84506291151 rounded to single (24 bits)
|
||||
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
|
||||
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
|
||||
* 1+(c+P1(s)/Q1(s)) if x < 0
|
||||
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
|
||||
* Remark: here we use the taylor series expansion at x=1.
|
||||
* erf(1+s) = erf(1) + s*Poly(s)
|
||||
* = 0.845.. + P1(s)/Q1(s)
|
||||
* That is, we use rational approximation to approximate
|
||||
* erf(1+s) - (c = (single)0.84506291151)
|
||||
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
|
||||
* where
|
||||
* P1(s) = degree 6 poly in s
|
||||
* Q1(s) = degree 6 poly in s
|
||||
*
|
||||
* 3. For x in [1.25,1/0.35(~2.857143)],
|
||||
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
|
||||
* erf(x) = 1 - erfc(x)
|
||||
* where
|
||||
* R1(z) = degree 7 poly in z, (z=1/x^2)
|
||||
* S1(z) = degree 8 poly in z
|
||||
*
|
||||
* 4. For x in [1/0.35,28]
|
||||
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
|
||||
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
|
||||
* = 2.0 - tinyv (if x <= -6)
|
||||
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
|
||||
* erf(x) = sign(x)*(1.0 - tinyv)
|
||||
* where
|
||||
* R2(z) = degree 6 poly in z, (z=1/x^2)
|
||||
* S2(z) = degree 7 poly in z
|
||||
*
|
||||
* Note1:
|
||||
* To compute exp(-x*x-0.5625+R/S), let s be a single
|
||||
* precision number and s := x; then
|
||||
* -x*x = -s*s + (s-x)*(s+x)
|
||||
* exp(-x*x-0.5626+R/S) =
|
||||
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
|
||||
* Note2:
|
||||
* Here 4 and 5 make use of the asymptotic series
|
||||
* exp(-x*x)
|
||||
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
|
||||
* x*sqrt(pi)
|
||||
* We use rational approximation to approximate
|
||||
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
|
||||
* Here is the error bound for R1/S1 and R2/S2
|
||||
* |R1/S1 - f(x)| < 2**(-62.57)
|
||||
* |R2/S2 - f(x)| < 2**(-61.52)
|
||||
*
|
||||
* 5. For inf > x >= 28
|
||||
* erf(x) = sign(x) *(1 - tinyv) (raise inexact)
|
||||
* erfc(x) = tinyv*tinyv (raise underflow) if x > 0
|
||||
* = 2 - tinyv if x<0
|
||||
*
|
||||
* 7. Special case:
|
||||
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
|
||||
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
|
||||
* erfc/erf(NaN) is NaN
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
tinyv = 1e-300,
|
||||
half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
||||
/* c = (float)0.84506291151 */
|
||||
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
|
||||
/*
|
||||
* Coefficients for approximation to erf on [0,0.84375]
|
||||
*/
|
||||
efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
|
||||
efx8 = 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
|
||||
pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
|
||||
pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
|
||||
pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
|
||||
pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
|
||||
pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
|
||||
qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
|
||||
qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
|
||||
qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
|
||||
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
|
||||
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
|
||||
/*
|
||||
* Coefficients for approximation to erf in [0.84375,1.25]
|
||||
*/
|
||||
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
|
||||
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
|
||||
pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
|
||||
pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
|
||||
pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
|
||||
pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
|
||||
pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
|
||||
qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
|
||||
qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
|
||||
qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
|
||||
qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
|
||||
qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
|
||||
qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1.25,1/0.35]
|
||||
*/
|
||||
ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
|
||||
ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
|
||||
ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
|
||||
ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
|
||||
ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
|
||||
ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
|
||||
ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
|
||||
ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
|
||||
sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
|
||||
sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
|
||||
sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
|
||||
sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
|
||||
sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
|
||||
sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
|
||||
sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
|
||||
sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
|
||||
/*
|
||||
* Coefficients for approximation to erfc in [1/.35,28]
|
||||
*/
|
||||
rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
|
||||
rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
|
||||
rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
|
||||
rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
|
||||
rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
|
||||
rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
|
||||
rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
|
||||
sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
|
||||
sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
|
||||
sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
|
||||
sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
|
||||
sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
|
||||
sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
|
||||
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
|
||||
|
||||
double erf(double x) {
|
||||
int hx, ix, i;
|
||||
double R, S, P, Q, s, y, z, r;
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix >= 0x7ff00000) { /* erf(nan)=nan */
|
||||
i = ((unsigned)hx >> 31) << 1;
|
||||
return (double)(1 - i) + one / x; /* erf(+-inf)=+-1 */
|
||||
}
|
||||
|
||||
if(ix < 0x3feb0000) { /* |x|<0.84375 */
|
||||
if(ix < 0x3e300000) { /* |x|<2**-28 */
|
||||
if(ix < 0x00800000)
|
||||
return 0.125 * (8.0 * x + efx8 * x); /*avoid underflow */
|
||||
return x + efx * x;
|
||||
}
|
||||
z = x * x;
|
||||
r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
|
||||
s = one + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
|
||||
y = r / s;
|
||||
return x + x * y;
|
||||
}
|
||||
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
|
||||
s = fabs(x) - one;
|
||||
P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
|
||||
Q = one + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
|
||||
if(hx >= 0) return erx + P / Q;
|
||||
else
|
||||
return -erx - P / Q;
|
||||
}
|
||||
if(ix >= 0x40180000) { /* inf>|x|>=6 */
|
||||
if(hx >= 0) return one - tinyv;
|
||||
else
|
||||
return tinyv - one;
|
||||
}
|
||||
x = fabs(x);
|
||||
s = one / (x * x);
|
||||
if(ix < 0x4006DB6E) { /* |x| < 1/0.35 */
|
||||
R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 + s * (ra5 + s * (ra6 + s * ra7))))));
|
||||
S = one + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 + s * (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
|
||||
} else { /* |x| >= 1/0.35 */
|
||||
R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6)))));
|
||||
S = one + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 + s * (sb5 + s * (sb6 + s * sb7))))));
|
||||
}
|
||||
z = x;
|
||||
__LO(z) = 0;
|
||||
r = __fdlibm_exp(-z * z - 0.5625) * __fdlibm_exp((z - x) * (z + x) + R / S);
|
||||
if(hx >= 0) return one - r / x;
|
||||
else
|
||||
return r / x - one;
|
||||
}
|
||||
|
||||
double erfc(double x) {
|
||||
int hx, ix;
|
||||
double R, S, P, Q, s, y, z, r;
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix >= 0x7ff00000) { /* erfc(nan)=nan */
|
||||
/* erfc(+-inf)=0,2 */
|
||||
return (double)(((unsigned)hx >> 31) << 1) + one / x;
|
||||
}
|
||||
|
||||
if(ix < 0x3feb0000) { /* |x|<0.84375 */
|
||||
if(ix < 0x3c700000) /* |x|<2**-56 */
|
||||
return one - x;
|
||||
z = x * x;
|
||||
r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
|
||||
s = one + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
|
||||
y = r / s;
|
||||
if(hx < 0x3fd00000) { /* x<1/4 */
|
||||
return one - (x + x * y);
|
||||
} else {
|
||||
r = x * y;
|
||||
r += (x - half);
|
||||
return half - r;
|
||||
}
|
||||
}
|
||||
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
|
||||
s = fabs(x) - one;
|
||||
P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
|
||||
Q = one + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
|
||||
if(hx >= 0) {
|
||||
z = one - erx;
|
||||
return z - P / Q;
|
||||
} else {
|
||||
z = erx + P / Q;
|
||||
return one + z;
|
||||
}
|
||||
}
|
||||
if(ix < 0x403c0000) { /* |x|<28 */
|
||||
x = fabs(x);
|
||||
s = one / (x * x);
|
||||
if(ix < 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
|
||||
R = ra0 + s * (ra1 + s * (ra2 + s * (ra3 + s * (ra4 + s * (ra5 + s * (ra6 + s * ra7))))));
|
||||
S = one + s * (sa1 + s * (sa2 + s * (sa3 + s * (sa4 + s * (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
|
||||
} else { /* |x| >= 1/.35 ~ 2.857143 */
|
||||
if(hx < 0 && ix >= 0x40180000) return two - tinyv; /* x < -6 */
|
||||
R = rb0 + s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6)))));
|
||||
S = one + s * (sb1 + s * (sb2 + s * (sb3 + s * (sb4 + s * (sb5 + s * (sb6 + s * sb7))))));
|
||||
}
|
||||
z = x;
|
||||
__LO(z) = 0;
|
||||
r = __fdlibm_exp(-z * z - 0.5625) *
|
||||
__fdlibm_exp((z - x) * (z + x) + R / S);
|
||||
if(hx > 0) return r / x;
|
||||
else
|
||||
return two - r / x;
|
||||
} else {
|
||||
if(hx > 0) return tinyv * tinyv;
|
||||
else
|
||||
return two - tinyv;
|
||||
}
|
||||
}
|
||||
213
external/fdlibm/s_expm1.c
vendored
Normal file
213
external/fdlibm/s_expm1.c
vendored
Normal file
@@ -0,0 +1,213 @@
|
||||
|
||||
/* @(#)s_expm1.c 1.5 04/04/22 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* expm1(x)
|
||||
* Returns exp(x)-1, the exponential of x minus 1.
|
||||
*
|
||||
* Method
|
||||
* 1. Argument reduction:
|
||||
* Given x, find r and integer k such that
|
||||
*
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
|
||||
*
|
||||
* Here a correction term c will be computed to compensate
|
||||
* the error in r when rounded to a floating-point number.
|
||||
*
|
||||
* 2. Approximating expm1(r) by a special rational function on
|
||||
* the interval [0,0.34658]:
|
||||
* Since
|
||||
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
|
||||
* we define R1(r*r) by
|
||||
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
|
||||
* That is,
|
||||
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
|
||||
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
||||
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
||||
* We use a special Remes algorithm on [0,0.347] to generate
|
||||
* a polynomial of degree 5 in r*r to approximate R1. The
|
||||
* maximum error of this polynomial approximation is bounded
|
||||
* by 2**-61. In other words,
|
||||
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
||||
* where Q1 = -1.6666666666666567384E-2,
|
||||
* Q2 = 3.9682539681370365873E-4,
|
||||
* Q3 = -9.9206344733435987357E-6,
|
||||
* Q4 = 2.5051361420808517002E-7,
|
||||
* Q5 = -6.2843505682382617102E-9;
|
||||
* (where z=r*r, and the values of Q1 to Q5 are listed below)
|
||||
* with error bounded by
|
||||
* | 5 | -61
|
||||
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
||||
* | |
|
||||
*
|
||||
* expm1(r) = exp(r)-1 is then computed by the following
|
||||
* specific way which minimize the accumulation rounding error:
|
||||
* 2 3
|
||||
* r r [ 3 - (R1 + R1*r/2) ]
|
||||
* expm1(r) = r + --- + --- * [--------------------]
|
||||
* 2 2 [ 6 - r*(3 - R1*r/2) ]
|
||||
*
|
||||
* To compensate the error in the argument reduction, we use
|
||||
* expm1(r+c) = expm1(r) + c + expm1(r)*c
|
||||
* ~ expm1(r) + c + r*c
|
||||
* Thus c+r*c will be added in as the correction terms for
|
||||
* expm1(r+c). Now rearrange the term to avoid optimization
|
||||
* screw up:
|
||||
* ( 2 2 )
|
||||
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
||||
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
||||
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
||||
* ( )
|
||||
*
|
||||
* = r - E
|
||||
* 3. Scale back to obtain expm1(x):
|
||||
* From step 1, we have
|
||||
* expm1(x) = either 2^k*[expm1(r)+1] - 1
|
||||
* = or 2^k*[expm1(r) + (1-2^-k)]
|
||||
* 4. Implementation notes:
|
||||
* (A). To save one multiplication, we scale the coefficient Qi
|
||||
* to Qi*2^i, and replace z by (x^2)/2.
|
||||
* (B). To achieve maximum accuracy, we compute expm1(x) by
|
||||
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
|
||||
* (ii) if k=0, return r-E
|
||||
* (iii) if k=-1, return 0.5*(r-E)-0.5
|
||||
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
||||
* else return 1.0+2.0*(r-E);
|
||||
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
||||
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
||||
* (vii) return 2^k(1-((E+2^-k)-r))
|
||||
*
|
||||
* Special cases:
|
||||
* expm1(INF) is INF, expm1(NaN) is NaN;
|
||||
* expm1(-INF) is -1, and
|
||||
* for finite argument, only expm1(0)=0 is exact.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
hugev = 1.0e+300,
|
||||
tinyv = 1.0e-300,
|
||||
o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
||||
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
||||
/* scaled coefficients related to expm1 */
|
||||
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
|
||||
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
|
||||
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
|
||||
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
|
||||
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
|
||||
|
||||
double expm1(double x) {
|
||||
double y, hi, lo, c, t, e, hxs, hfx, r1;
|
||||
int k, xsb;
|
||||
unsigned hx;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
xsb = hx & 0x80000000; /* sign bit of x */
|
||||
if(xsb == 0) y = x;
|
||||
else
|
||||
y = -x; /* y = |x| */
|
||||
hx &= 0x7fffffff; /* high word of |x| */
|
||||
|
||||
/* filter out hugev and non-finite argument */
|
||||
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
|
||||
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
||||
if(hx >= 0x7ff00000) {
|
||||
if(((hx & 0xfffff) | __LO(x)) != 0)
|
||||
return x + x; /* NaN */
|
||||
else
|
||||
return (xsb == 0) ? x : -1.0; /* exp(+-inf)={inf,-1} */
|
||||
}
|
||||
if(x > o_threshold) return hugev * hugev; /* overflow */
|
||||
}
|
||||
if(xsb != 0) { /* x < -56*ln2, return -1.0 with inexact */
|
||||
if(x + tinyv < 0.0) /* raise inexact */
|
||||
return tinyv - one; /* return -1 */
|
||||
}
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
||||
if(xsb == 0) {
|
||||
hi = x - ln2_hi;
|
||||
lo = ln2_lo;
|
||||
k = 1;
|
||||
} else {
|
||||
hi = x + ln2_hi;
|
||||
lo = -ln2_lo;
|
||||
k = -1;
|
||||
}
|
||||
} else {
|
||||
k = invln2 * x + ((xsb == 0) ? 0.5 : -0.5);
|
||||
t = k;
|
||||
hi = x - t * ln2_hi; /* t*ln2_hi is exact here */
|
||||
lo = t * ln2_lo;
|
||||
}
|
||||
x = hi - lo;
|
||||
c = (hi - x) - lo;
|
||||
} else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
|
||||
t = hugev + x; /* return x with inexact flags when x!=0 */
|
||||
return x - (t - (hugev + x));
|
||||
} else
|
||||
k = 0;
|
||||
|
||||
/* x is now in primary range */
|
||||
hfx = 0.5 * x;
|
||||
hxs = x * hfx;
|
||||
r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
|
||||
t = 3.0 - r1 * hfx;
|
||||
e = hxs * ((r1 - t) / (6.0 - x * t));
|
||||
if(k == 0) return x - (x * e - hxs); /* c is 0 */
|
||||
else {
|
||||
e = (x * (e - c) - c);
|
||||
e -= hxs;
|
||||
if(k == -1) return 0.5 * (x - e) - 0.5;
|
||||
if(k == 1)
|
||||
if(x < -0.25) return -2.0 * (e - (x + 0.5));
|
||||
else
|
||||
return one + 2.0 * (x - e);
|
||||
if(k <= -2 || k > 56) { /* suffice to return exp(x)-1 */
|
||||
y = one - (e - x);
|
||||
__HI(y) += (k << 20); /* add k to y's exponent */
|
||||
return y - one;
|
||||
}
|
||||
t = one;
|
||||
if(k < 20) {
|
||||
__HI(t) = 0x3ff00000 - (0x200000 >> k); /* t=1-2^-k */
|
||||
y = t - (e - x);
|
||||
__HI(y) += (k << 20); /* add k to y's exponent */
|
||||
} else {
|
||||
__HI(t) = ((0x3ff - k) << 20); /* 2^-k */
|
||||
y = x - (e + t);
|
||||
y += one;
|
||||
__HI(y) += (k << 20); /* add k to y's exponent */
|
||||
}
|
||||
}
|
||||
return y;
|
||||
}
|
||||
23
external/fdlibm/s_fabs.c
vendored
Normal file
23
external/fdlibm/s_fabs.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)s_fabs.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* fabs(x) returns the absolute value of x.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double fabs(double x) {
|
||||
__HI(x) &= 0x7fffffff;
|
||||
return x;
|
||||
}
|
||||
25
external/fdlibm/s_finite.c
vendored
Normal file
25
external/fdlibm/s_finite.c
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
|
||||
/* @(#)s_finite.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* finite(x) returns 1 is x is finite, else 0;
|
||||
* no branching!
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
int finite(double x) {
|
||||
int hx;
|
||||
hx = __HI(x);
|
||||
return (unsigned)((hx & 0x7fffffff) - 0x7ff00000) >> 31;
|
||||
}
|
||||
74
external/fdlibm/s_floor.c
vendored
Normal file
74
external/fdlibm/s_floor.c
vendored
Normal file
@@ -0,0 +1,74 @@
|
||||
|
||||
/* @(#)s_floor.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* floor(x)
|
||||
* Return x rounded toward -inf to integral value
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to floor(x).
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double hugev = 1.0e300;
|
||||
|
||||
double floor(double x) {
|
||||
int i0, i1, j0;
|
||||
unsigned i, j;
|
||||
i0 = __HI(x);
|
||||
i1 = __LO(x);
|
||||
j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
|
||||
if(j0 < 20) {
|
||||
if(j0 < 0) { /* raise inexact if x != 0 */
|
||||
if(hugev + x > 0.0) { /* return 0*sign(x) if |x|<1 */
|
||||
if(i0 >= 0) {
|
||||
i0 = i1 = 0;
|
||||
} else if(((i0 & 0x7fffffff) | i1) != 0) {
|
||||
i0 = 0xbff00000;
|
||||
i1 = 0;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
i = (0x000fffff) >> j0;
|
||||
if(((i0 & i) | i1) == 0) return x; /* x is integral */
|
||||
if(hugev + x > 0.0) { /* raise inexact flag */
|
||||
if(i0 < 0) i0 += (0x00100000) >> j0;
|
||||
i0 &= (~i);
|
||||
i1 = 0;
|
||||
}
|
||||
}
|
||||
} else if(j0 > 51) {
|
||||
if(j0 == 0x400) return x + x; /* inf or NaN */
|
||||
else
|
||||
return x; /* x is integral */
|
||||
} else {
|
||||
i = ((unsigned)(0xffffffff)) >> (j0 - 20);
|
||||
if((i1 & i) == 0) return x; /* x is integral */
|
||||
if(hugev + x > 0.0) { /* raise inexact flag */
|
||||
if(i0 < 0) {
|
||||
if(j0 == 20) i0 += 1;
|
||||
else {
|
||||
j = i1 + (1 << (52 - j0));
|
||||
if(j < i1) i0 += 1; /* got a carry */
|
||||
i1 = j;
|
||||
}
|
||||
}
|
||||
i1 &= (~i);
|
||||
}
|
||||
}
|
||||
__HI(x) = i0;
|
||||
__LO(x) = i1;
|
||||
return x;
|
||||
}
|
||||
46
external/fdlibm/s_frexp.c
vendored
Normal file
46
external/fdlibm/s_frexp.c
vendored
Normal file
@@ -0,0 +1,46 @@
|
||||
|
||||
/* @(#)s_frexp.c 1.4 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* for non-zero x
|
||||
* x = frexp(arg,&exp);
|
||||
* return a double fp quantity x such that 0.5 <= |x| <1.0
|
||||
* and the corresponding binary exponent "exp". That is
|
||||
* arg = x*2^exp.
|
||||
* If arg is inf, 0.0, or NaN, then frexp(arg,&exp) returns arg
|
||||
* with *exp=0.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
|
||||
|
||||
double frexp(double x, int* eptr) {
|
||||
int hx, ix, lx;
|
||||
hx = __HI(x);
|
||||
ix = 0x7fffffff & hx;
|
||||
lx = __LO(x);
|
||||
*eptr = 0;
|
||||
if(ix >= 0x7ff00000 || ((ix | lx) == 0)) return x; /* 0,inf,nan */
|
||||
if(ix < 0x00100000) { /* subnormal */
|
||||
x *= two54;
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
*eptr = -54;
|
||||
}
|
||||
*eptr += (ix >> 20) - 1022;
|
||||
hx = (hx & 0x800fffff) | 0x3fe00000;
|
||||
__HI(x) = hx;
|
||||
return x;
|
||||
}
|
||||
41
external/fdlibm/s_ilogb.c
vendored
Normal file
41
external/fdlibm/s_ilogb.c
vendored
Normal file
@@ -0,0 +1,41 @@
|
||||
|
||||
/* @(#)s_ilogb.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* ilogb(double x)
|
||||
* return the binary exponent of non-zero x
|
||||
* ilogb(0) = 0x80000001
|
||||
* ilogb(inf/NaN) = 0x7fffffff (no signal is raised)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
int ilogb(double x) {
|
||||
int hx, lx, ix;
|
||||
|
||||
hx = (__HI(x)) & 0x7fffffff; /* high word of x */
|
||||
if(hx < 0x00100000) {
|
||||
lx = __LO(x);
|
||||
if((hx | lx) == 0)
|
||||
return 0x80000001; /* ilogb(0) = 0x80000001 */
|
||||
else /* subnormal x */
|
||||
if(hx == 0) {
|
||||
for(ix = -1043; lx > 0; lx <<= 1) ix -= 1;
|
||||
} else {
|
||||
for(ix = -1022, hx <<= 11; hx > 0; hx <<= 1) ix -= 1;
|
||||
}
|
||||
return ix;
|
||||
} else if(hx < 0x7ff00000)
|
||||
return (hx >> 20) - 1023;
|
||||
else
|
||||
return 0x7fffffff;
|
||||
}
|
||||
28
external/fdlibm/s_isnan.c
vendored
Normal file
28
external/fdlibm/s_isnan.c
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
|
||||
/* @(#)s_isnan.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* isnan(x) returns 1 is x is nan, else 0;
|
||||
* no branching!
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
int isnan(double x) {
|
||||
int hx, lx;
|
||||
hx = (__HI(x) & 0x7fffffff);
|
||||
lx = __LO(x);
|
||||
hx |= (unsigned)(lx | (-lx)) >> 31;
|
||||
hx = 0x7ff00000 - hx;
|
||||
return ((unsigned)(hx)) >> 31;
|
||||
}
|
||||
22
external/fdlibm/s_ldexp.c
vendored
Normal file
22
external/fdlibm/s_ldexp.c
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
|
||||
/* @(#)s_ldexp.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
#include <errno.h>
|
||||
|
||||
double ldexp(double value, int exp) {
|
||||
if(!finite(value) || value == 0.0) return value;
|
||||
value = scalbn(value, exp);
|
||||
if(!finite(value) || value == 0.0) errno = ERANGE;
|
||||
return value;
|
||||
}
|
||||
165
external/fdlibm/s_log1p.c
vendored
Normal file
165
external/fdlibm/s_log1p.c
vendored
Normal file
@@ -0,0 +1,165 @@
|
||||
|
||||
/* @(#)s_log1p.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* double log1p(double x)
|
||||
*
|
||||
* Method :
|
||||
* 1. Argument Reduction: find k and f such that
|
||||
* 1+x = 2^k * (1+f),
|
||||
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
||||
*
|
||||
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
||||
* may not be representable exactly. In that case, a correction
|
||||
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
||||
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
||||
* and add back the correction term c/u.
|
||||
* (Note: when x > 2**53, one can simply return log(x))
|
||||
*
|
||||
* 2. Approximation of log1p(f).
|
||||
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
||||
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
||||
* = 2s + s*R
|
||||
* We use a special Reme algorithm on [0,0.1716] to generate
|
||||
* a polynomial of degree 14 to approximate R The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-58.45. In
|
||||
* other words,
|
||||
* 2 4 6 8 10 12 14
|
||||
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
||||
* (the values of Lp1 to Lp7 are listed in the program)
|
||||
* and
|
||||
* | 2 14 | -58.45
|
||||
* | Lp1*s +...+Lp7*s - R(z) | <= 2
|
||||
* | |
|
||||
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
||||
* In order to guarantee error in log below 1ulp, we compute log
|
||||
* by
|
||||
* log1p(f) = f - (hfsq - s*(hfsq+R)).
|
||||
*
|
||||
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
||||
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
||||
* Here ln2 is split into two floating point number:
|
||||
* ln2_hi + ln2_lo,
|
||||
* where n*ln2_hi is always exact for |n| < 2000.
|
||||
*
|
||||
* Special cases:
|
||||
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
||||
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
||||
* log1p(NaN) is that NaN with no signal.
|
||||
*
|
||||
* Accuracy:
|
||||
* according to an error analysis, the error is always less than
|
||||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*
|
||||
* Note: Assuming log() return accurate answer, the following
|
||||
* algorithm can be used to compute log1p(x) to within a few ULP:
|
||||
*
|
||||
* u = 1+x;
|
||||
* if(u==1.0) return x ; else
|
||||
* return log(u)*(x/(u-1.0));
|
||||
*
|
||||
* See HP-15C Advanced Functions Handbook, p.193.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
||||
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
||||
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
||||
Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
|
||||
Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
||||
Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
|
||||
Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
||||
Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
||||
Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
||||
Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
||||
|
||||
static double zero = 0.0;
|
||||
|
||||
double log1p(double x) {
|
||||
double hfsq, f, c, s, z, R, u;
|
||||
int k, hx, hu, ax;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
ax = hx & 0x7fffffff;
|
||||
|
||||
k = 1;
|
||||
if(hx < 0x3FDA827A) { /* x < 0.41422 */
|
||||
if(ax >= 0x3ff00000) { /* x <= -1.0 */
|
||||
if(x == -1.0) return -two54 / zero; /* log1p(-1)=+inf */
|
||||
else
|
||||
return (x - x) / (x - x); /* log1p(x<-1)=NaN */
|
||||
}
|
||||
if(ax < 0x3e200000) { /* |x| < 2**-29 */
|
||||
if(two54 + x > zero /* raise inexact */
|
||||
&& ax < 0x3c900000) /* |x| < 2**-54 */
|
||||
return x;
|
||||
else
|
||||
return x - x * x * 0.5;
|
||||
}
|
||||
if(hx > 0 || hx <= ((int)0xbfd2bec3)) {
|
||||
k = 0;
|
||||
f = x;
|
||||
hu = 1;
|
||||
} /* -0.2929<x<0.41422 */
|
||||
}
|
||||
if(hx >= 0x7ff00000) return x + x;
|
||||
if(k != 0) {
|
||||
if(hx < 0x43400000) {
|
||||
u = 1.0 + x;
|
||||
hu = __HI(u); /* high word of u */
|
||||
k = (hu >> 20) - 1023;
|
||||
c = (k > 0) ? 1.0 - (u - x) : x - (u - 1.0); /* correction term */
|
||||
c /= u;
|
||||
} else {
|
||||
u = x;
|
||||
hu = __HI(u); /* high word of u */
|
||||
k = (hu >> 20) - 1023;
|
||||
c = 0;
|
||||
}
|
||||
hu &= 0x000fffff;
|
||||
if(hu < 0x6a09e) {
|
||||
__HI(u) = hu | 0x3ff00000; /* normalize u */
|
||||
} else {
|
||||
k += 1;
|
||||
__HI(u) = hu | 0x3fe00000; /* normalize u/2 */
|
||||
hu = (0x00100000 - hu) >> 2;
|
||||
}
|
||||
f = u - 1.0;
|
||||
}
|
||||
hfsq = 0.5 * f * f;
|
||||
if(hu == 0) { /* |f| < 2**-20 */
|
||||
if(f == zero)
|
||||
if(k == 0) return zero;
|
||||
else {
|
||||
c += k * ln2_lo;
|
||||
return k * ln2_hi + c;
|
||||
}
|
||||
R = hfsq * (1.0 - 0.66666666666666666 * f);
|
||||
if(k == 0) return f - R;
|
||||
else
|
||||
return k * ln2_hi - ((R - (k * ln2_lo + c)) - f);
|
||||
}
|
||||
s = f / (2.0 + f);
|
||||
z = s * s;
|
||||
R = z * (Lp1 + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7))))));
|
||||
if(k == 0) return f - (hfsq - s * (hfsq + R));
|
||||
else
|
||||
return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
|
||||
}
|
||||
32
external/fdlibm/s_logb.c
vendored
Normal file
32
external/fdlibm/s_logb.c
vendored
Normal file
@@ -0,0 +1,32 @@
|
||||
|
||||
/* @(#)s_logb.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* double logb(x)
|
||||
* IEEE 754 logb. Included to pass IEEE test suite. Not recommend.
|
||||
* Use ilogb instead.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double logb(double x) {
|
||||
int lx, ix;
|
||||
ix = (__HI(x)) & 0x7fffffff; /* high |x| */
|
||||
lx = __LO(x); /* low x */
|
||||
if((ix | lx) == 0) return -1.0 / fabs(x);
|
||||
if(ix >= 0x7ff00000) return x * x;
|
||||
if((ix >>= 20) == 0) /* IEEE 754 logb */
|
||||
return -1022.0;
|
||||
else
|
||||
return (double)(ix - 1023);
|
||||
}
|
||||
70
external/fdlibm/s_modf.c
vendored
Normal file
70
external/fdlibm/s_modf.c
vendored
Normal file
@@ -0,0 +1,70 @@
|
||||
|
||||
/* @(#)s_modf.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* modf(double x, double *iptr)
|
||||
* return fraction part of x, and return x's integral part in *iptr.
|
||||
* Method:
|
||||
* Bit twiddling.
|
||||
*
|
||||
* Exception:
|
||||
* No exception.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double one = 1.0;
|
||||
|
||||
double modf(double x, double* iptr) {
|
||||
int i0, i1, j0;
|
||||
unsigned i;
|
||||
i0 = __HI(x); /* high x */
|
||||
i1 = __LO(x); /* low x */
|
||||
j0 = ((i0 >> 20) & 0x7ff) - 0x3ff; /* exponent of x */
|
||||
if(j0 < 20) { /* integer part in high x */
|
||||
if(j0 < 0) { /* |x|<1 */
|
||||
__HIp(iptr) = i0 & 0x80000000;
|
||||
__LOp(iptr) = 0; /* *iptr = +-0 */
|
||||
return x;
|
||||
} else {
|
||||
i = (0x000fffff) >> j0;
|
||||
if(((i0 & i) | i1) == 0) { /* x is integral */
|
||||
*iptr = x;
|
||||
__HI(x) &= 0x80000000;
|
||||
__LO(x) = 0; /* return +-0 */
|
||||
return x;
|
||||
} else {
|
||||
__HIp(iptr) = i0 & (~i);
|
||||
__LOp(iptr) = 0;
|
||||
return x - *iptr;
|
||||
}
|
||||
}
|
||||
} else if(j0 > 51) { /* no fraction part */
|
||||
*iptr = x * one;
|
||||
__HI(x) &= 0x80000000;
|
||||
__LO(x) = 0; /* return +-0 */
|
||||
return x;
|
||||
} else { /* fraction part in low x */
|
||||
i = ((unsigned)(0xffffffff)) >> (j0 - 20);
|
||||
if((i1 & i) == 0) { /* x is integral */
|
||||
*iptr = x;
|
||||
__HI(x) &= 0x80000000;
|
||||
__LO(x) = 0; /* return +-0 */
|
||||
return x;
|
||||
} else {
|
||||
__HIp(iptr) = i0;
|
||||
__LOp(iptr) = i1 & (~i);
|
||||
return x - *iptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
76
external/fdlibm/s_nextafter.c
vendored
Normal file
76
external/fdlibm/s_nextafter.c
vendored
Normal file
@@ -0,0 +1,76 @@
|
||||
|
||||
/* @(#)s_nextafter.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* IEEE functions
|
||||
* nextafter(x,y)
|
||||
* return the next machine floating-point number of x in the
|
||||
* direction toward y.
|
||||
* Special cases:
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double nextafter(double x, double y) {
|
||||
int hx, hy, ix, iy;
|
||||
unsigned lx, ly;
|
||||
|
||||
hx = __HI(x); /* high word of x */
|
||||
lx = __LO(x); /* low word of x */
|
||||
hy = __HI(y); /* high word of y */
|
||||
ly = __LO(y); /* low word of y */
|
||||
ix = hx & 0x7fffffff; /* |x| */
|
||||
iy = hy & 0x7fffffff; /* |y| */
|
||||
|
||||
if(((ix >= 0x7ff00000) && ((ix - 0x7ff00000) | lx) != 0) || /* x is nan */
|
||||
((iy >= 0x7ff00000) && ((iy - 0x7ff00000) | ly) != 0)) /* y is nan */
|
||||
return x + y;
|
||||
if(x == y) return x; /* x=y, return x */
|
||||
if((ix | lx) == 0) { /* x == 0 */
|
||||
__HI(x) = hy & 0x80000000; /* return +-minsubnormal */
|
||||
__LO(x) = 1;
|
||||
y = x * x;
|
||||
if(y == x) return y;
|
||||
else
|
||||
return x; /* raise underflow flag */
|
||||
}
|
||||
if(hx >= 0) { /* x > 0 */
|
||||
if(hx > hy || ((hx == hy) && (lx > ly))) { /* x > y, x -= ulp */
|
||||
if(lx == 0) hx -= 1;
|
||||
lx -= 1;
|
||||
} else { /* x < y, x += ulp */
|
||||
lx += 1;
|
||||
if(lx == 0) hx += 1;
|
||||
}
|
||||
} else { /* x < 0 */
|
||||
if(hy >= 0 || hx > hy || ((hx == hy) && (lx > ly))) { /* x < y, x -= ulp */
|
||||
if(lx == 0) hx -= 1;
|
||||
lx -= 1;
|
||||
} else { /* x > y, x += ulp */
|
||||
lx += 1;
|
||||
if(lx == 0) hx += 1;
|
||||
}
|
||||
}
|
||||
hy = hx & 0x7ff00000;
|
||||
if(hy >= 0x7ff00000) return x + x; /* overflow */
|
||||
if(hy < 0x00100000) { /* underflow */
|
||||
y = x * x;
|
||||
if(y != x) { /* raise underflow flag */
|
||||
__HI(y) = hx;
|
||||
__LO(y) = lx;
|
||||
return y;
|
||||
}
|
||||
}
|
||||
__HI(x) = hx;
|
||||
__LO(x) = lx;
|
||||
return x;
|
||||
}
|
||||
76
external/fdlibm/s_rint.c
vendored
Normal file
76
external/fdlibm/s_rint.c
vendored
Normal file
@@ -0,0 +1,76 @@
|
||||
|
||||
/* @(#)s_rint.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* rint(x)
|
||||
* Return x rounded to integral value according to the prevailing
|
||||
* rounding mode.
|
||||
* Method:
|
||||
* Using floating addition.
|
||||
* Exception:
|
||||
* Inexact flag raised if x not equal to rint(x).
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
TWO52[2] = {
|
||||
4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
|
||||
-4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
|
||||
};
|
||||
|
||||
double rint(double x) {
|
||||
int i0, j0, sx;
|
||||
unsigned i, i1;
|
||||
double w, t;
|
||||
i0 = __HI(x);
|
||||
sx = (i0 >> 31) & 1;
|
||||
i1 = __LO(x);
|
||||
j0 = ((i0 >> 20) & 0x7ff) - 0x3ff;
|
||||
if(j0 < 20) {
|
||||
if(j0 < 0) {
|
||||
if(((i0 & 0x7fffffff) | i1) == 0) return x;
|
||||
i1 |= (i0 & 0x0fffff);
|
||||
i0 &= 0xfffe0000;
|
||||
i0 |= ((i1 | -i1) >> 12) & 0x80000;
|
||||
__HI(x) = i0;
|
||||
w = TWO52[sx] + x;
|
||||
t = w - TWO52[sx];
|
||||
i0 = __HI(t);
|
||||
__HI(t) = (i0 & 0x7fffffff) | (sx << 31);
|
||||
return t;
|
||||
} else {
|
||||
i = (0x000fffff) >> j0;
|
||||
if(((i0 & i) | i1) == 0) return x; /* x is integral */
|
||||
i >>= 1;
|
||||
if(((i0 & i) | i1) != 0) {
|
||||
if(j0 == 19) i1 = 0x40000000;
|
||||
else
|
||||
i0 = (i0 & (~i)) | ((0x20000) >> j0);
|
||||
}
|
||||
}
|
||||
} else if(j0 > 51) {
|
||||
if(j0 == 0x400) return x + x; /* inf or NaN */
|
||||
else
|
||||
return x; /* x is integral */
|
||||
} else {
|
||||
i = ((unsigned)(0xffffffff)) >> (j0 - 20);
|
||||
if((i1 & i) == 0) return x; /* x is integral */
|
||||
i >>= 1;
|
||||
if((i1 & i) != 0) i1 = (i1 & (~i)) | ((0x40000000) >> (j0 - 20));
|
||||
}
|
||||
__HI(x) = i0;
|
||||
__LO(x) = i1;
|
||||
w = TWO52[sx] + x;
|
||||
return w - TWO52[sx];
|
||||
}
|
||||
57
external/fdlibm/s_scalbn.c
vendored
Normal file
57
external/fdlibm/s_scalbn.c
vendored
Normal file
@@ -0,0 +1,57 @@
|
||||
|
||||
/* @(#)s_scalbn.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* scalbn (double x, int n)
|
||||
* scalbn(x,n) returns x* 2**n computed by exponent
|
||||
* manipulation rather than by actually performing an
|
||||
* exponentiation or a multiplication.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
|
||||
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
|
||||
hugev = 1.0e+300,
|
||||
tinyv = 1.0e-300;
|
||||
|
||||
double scalbn(double x, int n) {
|
||||
int k, hx, lx;
|
||||
hx = __HI(x);
|
||||
lx = __LO(x);
|
||||
k = (hx & 0x7ff00000) >> 20; /* extract exponent */
|
||||
if(k == 0) { /* 0 or subnormal x */
|
||||
if((lx | (hx & 0x7fffffff)) == 0) return x; /* +-0 */
|
||||
x *= two54;
|
||||
hx = __HI(x);
|
||||
k = ((hx & 0x7ff00000) >> 20) - 54;
|
||||
if(n < -50000) return tinyv * x; /*underflow*/
|
||||
}
|
||||
if(k == 0x7ff) return x + x; /* NaN or Inf */
|
||||
k = k + n;
|
||||
if(k > 0x7fe) return hugev * copysign(hugev, x); /* overflow */
|
||||
if(k > 0) /* normal result */
|
||||
{
|
||||
__HI(x) = (hx & 0x800fffff) | (k << 20);
|
||||
return x;
|
||||
}
|
||||
if(k <= -54)
|
||||
if(n > 50000) /* in case integer overflow in n+k */
|
||||
return hugev * copysign(hugev, x); /*overflow*/
|
||||
else
|
||||
return tinyv * copysign(tinyv, x); /*underflow*/
|
||||
k += 54; /* subnormal result */
|
||||
__HI(x) = (hx & 0x800fffff) | (k << 20);
|
||||
return x * twom54;
|
||||
}
|
||||
2
external/fdlibm/s_signgam.c
vendored
Normal file
2
external/fdlibm/s_signgam.c
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
#include "math.h"
|
||||
int signgam = 0;
|
||||
24
external/fdlibm/s_significand.c
vendored
Normal file
24
external/fdlibm/s_significand.c
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
|
||||
/* @(#)s_significand.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* significand(x) computes just
|
||||
* scalb(x, (double) -ilogb(x)),
|
||||
* for exercising the fraction-part(F) IEEE 754-1985 test vector.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double significand(double x) {
|
||||
return __fdlibm_scalb(x, (double)-ilogb(x));
|
||||
}
|
||||
76
external/fdlibm/s_sin.c
vendored
Normal file
76
external/fdlibm/s_sin.c
vendored
Normal file
@@ -0,0 +1,76 @@
|
||||
|
||||
/* @(#)s_sin.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* sin(x)
|
||||
* Return sine function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __fdlibm_kernel_sin ... sine function on [-pi/4,pi/4]
|
||||
* __fdlibm_kernel_cos ... cose function on [-pi/4,pi/4]
|
||||
* __fdlibm_kernel_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double sin(double x) {
|
||||
double y[2], z = 0.0;
|
||||
int n, ix;
|
||||
|
||||
/* High word of x. */
|
||||
ix = __HI(x);
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
ix &= 0x7fffffff;
|
||||
if(ix <= 0x3fe921fb) return __fdlibm_kernel_sin(x, z, 0);
|
||||
|
||||
/* sin(Inf or NaN) is NaN */
|
||||
else if(ix >= 0x7ff00000)
|
||||
return x - x;
|
||||
|
||||
/* argument reduction needed */
|
||||
else {
|
||||
n = __fdlibm_rem_pio2(x, y);
|
||||
switch(n & 3) {
|
||||
case 0:
|
||||
return __fdlibm_kernel_sin(y[0], y[1], 1);
|
||||
case 1:
|
||||
return __fdlibm_kernel_cos(y[0], y[1]);
|
||||
case 2:
|
||||
return -__fdlibm_kernel_sin(y[0], y[1], 1);
|
||||
default:
|
||||
return -__fdlibm_kernel_cos(y[0], y[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
67
external/fdlibm/s_tan.c
vendored
Normal file
67
external/fdlibm/s_tan.c
vendored
Normal file
@@ -0,0 +1,67 @@
|
||||
|
||||
/* @(#)s_tan.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* tan(x)
|
||||
* Return tangent function of x.
|
||||
*
|
||||
* kernel function:
|
||||
* __fdlibm_kernel_tan ... tangent function on [-pi/4,pi/4]
|
||||
* __fdlibm_kernel_rem_pio2 ... argument reduction routine
|
||||
*
|
||||
* Method.
|
||||
* Let S,C and T denote the sin, cos and tan respectively on
|
||||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||||
* We have
|
||||
*
|
||||
* n sin(x) cos(x) tan(x)
|
||||
* ----------------------------------------------------------
|
||||
* 0 S C T
|
||||
* 1 C -S -1/T
|
||||
* 2 -S -C T
|
||||
* 3 -C S -1/T
|
||||
* ----------------------------------------------------------
|
||||
*
|
||||
* Special cases:
|
||||
* Let trig be any of sin, cos, or tan.
|
||||
* trig(+-INF) is NaN, with signals;
|
||||
* trig(NaN) is that NaN;
|
||||
*
|
||||
* Accuracy:
|
||||
* TRIG(x) returns trig(x) nearly rounded
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double tan(double x) {
|
||||
double y[2], z = 0.0;
|
||||
int n, ix;
|
||||
|
||||
/* High word of x. */
|
||||
ix = __HI(x);
|
||||
|
||||
/* |x| ~< pi/4 */
|
||||
ix &= 0x7fffffff;
|
||||
if(ix <= 0x3fe921fb) return __fdlibm_kernel_tan(x, z, 1);
|
||||
|
||||
/* tan(Inf or NaN) is NaN */
|
||||
else if(ix >= 0x7ff00000)
|
||||
return x - x; /* NaN */
|
||||
|
||||
/* argument reduction needed */
|
||||
else {
|
||||
n = __fdlibm_rem_pio2(x, y);
|
||||
return __fdlibm_kernel_tan(y[0], y[1], 1 - ((n & 1) << 1)); /* 1 -- n even
|
||||
-1 -- n odd */
|
||||
}
|
||||
}
|
||||
73
external/fdlibm/s_tanh.c
vendored
Normal file
73
external/fdlibm/s_tanh.c
vendored
Normal file
@@ -0,0 +1,73 @@
|
||||
|
||||
/* @(#)s_tanh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* Tanh(x)
|
||||
* Return the Hyperbolic Tangent of x
|
||||
*
|
||||
* Method :
|
||||
* x -x
|
||||
* e - e
|
||||
* 0. tanh(x) is defined to be -----------
|
||||
* x -x
|
||||
* e + e
|
||||
* 1. reduce x to non-negative by tanh(-x) = -tanh(x).
|
||||
* 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x)
|
||||
* -t
|
||||
* 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
|
||||
* t + 2
|
||||
* 2
|
||||
* 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
|
||||
* t + 2
|
||||
* 22.0 < x <= INF : tanh(x) := 1.
|
||||
*
|
||||
* Special cases:
|
||||
* tanh(NaN) is NaN;
|
||||
* only tanh(0)=0 is exact for finite argument.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double one = 1.0, two = 2.0, tinyv = 1.0e-300;
|
||||
|
||||
double tanh(double x) {
|
||||
double t, z;
|
||||
int jx, ix;
|
||||
|
||||
/* High word of |x|. */
|
||||
jx = __HI(x);
|
||||
ix = jx & 0x7fffffff;
|
||||
|
||||
/* x is INF or NaN */
|
||||
if(ix >= 0x7ff00000) {
|
||||
if(jx >= 0) return one / x + one; /* tanh(+-inf)=+-1 */
|
||||
else
|
||||
return one / x - one; /* tanh(NaN) = NaN */
|
||||
}
|
||||
|
||||
/* |x| < 22 */
|
||||
if(ix < 0x40360000) { /* |x|<22 */
|
||||
if(ix < 0x3c800000) /* |x|<2**-55 */
|
||||
return x * (one + x); /* tanh(small) = small */
|
||||
if(ix >= 0x3ff00000) { /* |x|>=1 */
|
||||
t = expm1(two * fabs(x));
|
||||
z = one - two / (t + two);
|
||||
} else {
|
||||
t = expm1(-two * fabs(x));
|
||||
z = -t / (t + two);
|
||||
}
|
||||
/* |x| > 22, return +-1 */
|
||||
} else {
|
||||
z = one - tinyv; /* raised inexact flag */
|
||||
}
|
||||
return (jx >= 0) ? z : -z;
|
||||
}
|
||||
23
external/fdlibm/w_acos.c
vendored
Normal file
23
external/fdlibm/w_acos.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_acos.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrap_acos(x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double acos(double x) /* wrapper acos */
|
||||
{
|
||||
return __fdlibm_acos(x);
|
||||
}
|
||||
24
external/fdlibm/w_acosh.c
vendored
Normal file
24
external/fdlibm/w_acosh.c
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
|
||||
/* @(#)w_acosh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper acosh(x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double acosh(double x) /* wrapper acosh */
|
||||
{
|
||||
return __fdlibm_acosh(x);
|
||||
}
|
||||
24
external/fdlibm/w_asin.c
vendored
Normal file
24
external/fdlibm/w_asin.c
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
|
||||
/* @(#)w_asin.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper asin(x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double asin(double x) /* wrapper asin */
|
||||
{
|
||||
return __fdlibm_asin(x);
|
||||
}
|
||||
24
external/fdlibm/w_atan2.c
vendored
Normal file
24
external/fdlibm/w_atan2.c
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
|
||||
/* @(#)w_atan2.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper atan2(y,x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double atan2(double y, double x) /* wrapper atan2 */
|
||||
{
|
||||
return __fdlibm_atan2(y, x);
|
||||
}
|
||||
22
external/fdlibm/w_atanh.c
vendored
Normal file
22
external/fdlibm/w_atanh.c
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
|
||||
/* @(#)w_atanh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
/*
|
||||
* wrapper atanh(x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double atanh(double x) /* wrapper atanh */
|
||||
{
|
||||
return __fdlibm_atanh(x);
|
||||
}
|
||||
23
external/fdlibm/w_cosh.c
vendored
Normal file
23
external/fdlibm/w_cosh.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_cosh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper cosh(x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double cosh(double x) /* wrapper cosh */
|
||||
{
|
||||
return __fdlibm_cosh(x);
|
||||
}
|
||||
26
external/fdlibm/w_exp.c
vendored
Normal file
26
external/fdlibm/w_exp.c
vendored
Normal file
@@ -0,0 +1,26 @@
|
||||
|
||||
/* @(#)w_exp.c 1.4 04/04/22 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper exp(x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
||||
u_threshold = -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
|
||||
|
||||
double exp(double x) /* wrapper exp */
|
||||
{
|
||||
return __fdlibm_exp(x);
|
||||
}
|
||||
23
external/fdlibm/w_fmod.c
vendored
Normal file
23
external/fdlibm/w_fmod.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_fmod.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper fmod(x,y)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double fmod(double x, double y) /* wrapper fmod */
|
||||
{
|
||||
return __fdlibm_fmod(x, y);
|
||||
}
|
||||
27
external/fdlibm/w_gamma.c
vendored
Normal file
27
external/fdlibm/w_gamma.c
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
|
||||
/* @(#)w_gamma.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* double gamma(double x)
|
||||
* Return the logarithm of the Gamma function of x.
|
||||
*
|
||||
* Method: call gamma_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
extern int signgam;
|
||||
|
||||
double gamma(double x) {
|
||||
return __fdlibm_gamma_r(x, &signgam);
|
||||
}
|
||||
23
external/fdlibm/w_gamma_r.c
vendored
Normal file
23
external/fdlibm/w_gamma_r.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_gamma_r.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper double gamma_r(double x, int *signgamp)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double gamma_r(double x, int* signgamp) /* wrapper lgamma_r */
|
||||
{
|
||||
return __fdlibm_gamma_r(x, signgamp);
|
||||
}
|
||||
23
external/fdlibm/w_hypot.c
vendored
Normal file
23
external/fdlibm/w_hypot.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_hypot.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper hypot(x,y)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double hypot(double x, double y) /* wrapper hypot */
|
||||
{
|
||||
return __fdlibm_hypot(x, y);
|
||||
}
|
||||
28
external/fdlibm/w_j0.c
vendored
Normal file
28
external/fdlibm/w_j0.c
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
|
||||
/* @(#)w_j0.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper j0(double x), y0(double x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double j0(double x) /* wrapper j0 */
|
||||
{
|
||||
return __fdlibm_j0(x);
|
||||
}
|
||||
|
||||
double y0(double x) /* wrapper y0 */
|
||||
{
|
||||
return __fdlibm_y0(x);
|
||||
}
|
||||
28
external/fdlibm/w_j1.c
vendored
Normal file
28
external/fdlibm/w_j1.c
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
|
||||
/* @(#)w_j1.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper of j1,y1
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double j1(double x) /* wrapper j1 */
|
||||
{
|
||||
return __fdlibm_j1(x);
|
||||
}
|
||||
|
||||
double y1(double x) /* wrapper y1 */
|
||||
{
|
||||
return __fdlibm_y1(x);
|
||||
}
|
||||
50
external/fdlibm/w_jn.c
vendored
Normal file
50
external/fdlibm/w_jn.c
vendored
Normal file
@@ -0,0 +1,50 @@
|
||||
|
||||
/* @(#)w_jn.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper jn(int n, double x), yn(int n, double x)
|
||||
* floating point Bessel's function of the 1st and 2nd kind
|
||||
* of order n
|
||||
*
|
||||
* Special cases:
|
||||
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
||||
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
||||
* Note 2. About jn(n,x), yn(n,x)
|
||||
* For n=0, j0(x) is called,
|
||||
* for n=1, j1(x) is called,
|
||||
* for n<x, forward recursion us used starting
|
||||
* from values of j0(x) and j1(x).
|
||||
* for n>x, a continued fraction approximation to
|
||||
* j(n,x)/j(n-1,x) is evaluated and then backward
|
||||
* recursion is used starting from a supposed value
|
||||
* for j(n,x). The resulting value of j(0,x) is
|
||||
* compared with the actual value to correct the
|
||||
* supposed value of j(n,x).
|
||||
*
|
||||
* yn(n,x) is similar in all respects, except
|
||||
* that forward recursion is used for all
|
||||
* values of n>1.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double jn(int n, double x) /* wrapper jn */
|
||||
{
|
||||
return __fdlibm_jn(n, x);
|
||||
}
|
||||
|
||||
double yn(int n, double x) /* wrapper yn */
|
||||
{
|
||||
return __fdlibm_yn(n, x);
|
||||
}
|
||||
27
external/fdlibm/w_lgamma.c
vendored
Normal file
27
external/fdlibm/w_lgamma.c
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
|
||||
/* @(#)w_lgamma.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* double lgamma(double x)
|
||||
* Return the logarithm of the Gamma function of x.
|
||||
*
|
||||
* Method: call __fdlibm_lgamma_r
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
extern int signgam;
|
||||
|
||||
double lgamma(double x) {
|
||||
return __fdlibm_lgamma_r(x, &signgam);
|
||||
}
|
||||
23
external/fdlibm/w_lgamma_r.c
vendored
Normal file
23
external/fdlibm/w_lgamma_r.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_lgamma_r.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper double lgamma_r(double x, int *signgamp)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double lgamma_r(double x, int* signgamp) /* wrapper lgamma_r */
|
||||
{
|
||||
return __fdlibm_lgamma_r(x, signgamp);
|
||||
}
|
||||
23
external/fdlibm/w_log.c
vendored
Normal file
23
external/fdlibm/w_log.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_log.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper log(x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double log(double x) /* wrapper log */
|
||||
{
|
||||
return __fdlibm_log(x);
|
||||
}
|
||||
23
external/fdlibm/w_log10.c
vendored
Normal file
23
external/fdlibm/w_log10.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_log10.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper log10(X)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double log10(double x) /* wrapper log10 */
|
||||
{
|
||||
return __fdlibm_log10(x);
|
||||
}
|
||||
24
external/fdlibm/w_pow.c
vendored
Normal file
24
external/fdlibm/w_pow.c
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
|
||||
|
||||
/* @(#)w_pow.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper pow(x,y) return x**y
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double pow(double x, double y) /* wrapper pow */
|
||||
{
|
||||
return __fdlibm_pow(x, y);
|
||||
}
|
||||
23
external/fdlibm/w_remainder.c
vendored
Normal file
23
external/fdlibm/w_remainder.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_remainder.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper remainder(x,p)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double remainder(double x, double y) /* wrapper remainder */
|
||||
{
|
||||
return __fdlibm_remainder(x, y);
|
||||
}
|
||||
27
external/fdlibm/w_scalb.c
vendored
Normal file
27
external/fdlibm/w_scalb.c
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
|
||||
/* @(#)w_scalb.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper scalb(double x, double fn) is provide for
|
||||
* passing various standard test suite. One
|
||||
* should use scalbn() instead.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
#include <errno.h>
|
||||
|
||||
double scalb(double x, double fn) /* wrapper scalb */
|
||||
{
|
||||
return __fdlibm_scalb(x, fn);
|
||||
}
|
||||
23
external/fdlibm/w_sinh.c
vendored
Normal file
23
external/fdlibm/w_sinh.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_sinh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper sinh(x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double sinh(double x) /* wrapper sinh */
|
||||
{
|
||||
return __fdlibm_sinh(x);
|
||||
}
|
||||
23
external/fdlibm/w_sqrt.c
vendored
Normal file
23
external/fdlibm/w_sqrt.c
vendored
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
/* @(#)w_sqrt.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* wrapper sqrt(x)
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
double sqrt(double x) /* wrapper sqrt */
|
||||
{
|
||||
return __fdlibm_sqrt(x);
|
||||
}
|
||||
Reference in New Issue
Block a user