mirror of
https://gitea.nishi.boats/pyrite-dev/milsko
synced 2026-01-10 11:23:29 +00:00
add fdlibm
git-svn-id: http://svn2.nishi.boats/svn/milsko/trunk@557 b9cfdab3-6d41-4d17-bbe4-086880011989
This commit is contained in:
55
external/fdlibm/e_acosh.c
vendored
Normal file
55
external/fdlibm/e_acosh.c
vendored
Normal file
@@ -0,0 +1,55 @@
|
||||
|
||||
/* @(#)e_acosh.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*
|
||||
*/
|
||||
|
||||
/* __fdlibm_acosh(x)
|
||||
* Method :
|
||||
* Based on
|
||||
* acosh(x) = log [ x + sqrt(x*x-1) ]
|
||||
* we have
|
||||
* acosh(x) := log(x)+ln2, if x is large; else
|
||||
* acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
|
||||
* acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
|
||||
*
|
||||
* Special cases:
|
||||
* acosh(x) is NaN with signal if x<1.
|
||||
* acosh(NaN) is NaN without signal.
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
one = 1.0,
|
||||
ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
|
||||
|
||||
double __fdlibm_acosh(double x) {
|
||||
double t;
|
||||
int hx;
|
||||
hx = __HI(x);
|
||||
if(hx < 0x3ff00000) { /* x < 1 */
|
||||
return (x - x) / (x - x);
|
||||
} else if(hx >= 0x41b00000) { /* x > 2**28 */
|
||||
if(hx >= 0x7ff00000) { /* x is inf of NaN */
|
||||
return x + x;
|
||||
} else
|
||||
return __fdlibm_log(x) + ln2; /* acosh(hugev)=log(2x) */
|
||||
} else if(((hx - 0x3ff00000) | __LO(x)) == 0) {
|
||||
return 0.0; /* acosh(1) = 0 */
|
||||
} else if(hx > 0x40000000) { /* 2**28 > x > 2 */
|
||||
t = x * x;
|
||||
return __fdlibm_log(2.0 * x - one / (x + sqrt(t - one)));
|
||||
} else { /* 1<x<2 */
|
||||
t = x - one;
|
||||
return log1p(t + sqrt(2.0 * t + t * t));
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user