mirror of
https://gitea.nishi.boats/pyrite-dev/milsko
synced 2026-01-05 00:50:53 +00:00
add fdlibm
git-svn-id: http://svn2.nishi.boats/svn/milsko/trunk@557 b9cfdab3-6d41-4d17-bbe4-086880011989
This commit is contained in:
105
external/fdlibm/e_asin.c
vendored
Normal file
105
external/fdlibm/e_asin.c
vendored
Normal file
@@ -0,0 +1,105 @@
|
||||
|
||||
/* @(#)e_asin.c 1.3 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/* __fdlibm_asin(x)
|
||||
* Method :
|
||||
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
|
||||
* we approximate asin(x) on [0,0.5] by
|
||||
* asin(x) = x + x*x^2*R(x^2)
|
||||
* where
|
||||
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
|
||||
* and its remez error is bounded by
|
||||
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
|
||||
*
|
||||
* For x in [0.5,1]
|
||||
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
|
||||
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
|
||||
* then for x>0.98
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
|
||||
* For x<=0.98, let pio4_hi = pio2_hi/2, then
|
||||
* f = hi part of s;
|
||||
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
|
||||
* and
|
||||
* asin(x) = pi/2 - 2*(s+s*z*R(z))
|
||||
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
|
||||
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
|
||||
*
|
||||
* Special cases:
|
||||
* if x is NaN, return x itself;
|
||||
* if |x|>1, return NaN with invalid signal.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
||||
hugev = 1.000e+300,
|
||||
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
|
||||
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
|
||||
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
|
||||
/* coefficient for R(x^2) */
|
||||
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
|
||||
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
|
||||
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
|
||||
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
|
||||
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
|
||||
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
|
||||
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
|
||||
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
|
||||
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
|
||||
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
|
||||
|
||||
double __fdlibm_asin(double x) {
|
||||
double t, w, p, q, c, r, s;
|
||||
int hx, ix;
|
||||
hx = __HI(x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if(ix >= 0x3ff00000) { /* |x|>= 1 */
|
||||
if(((ix - 0x3ff00000) | __LO(x)) == 0)
|
||||
/* asin(1)=+-pi/2 with inexact */
|
||||
return x * pio2_hi + x * pio2_lo;
|
||||
return (x - x) / (x - x); /* asin(|x|>1) is NaN */
|
||||
} else if(ix < 0x3fe00000) { /* |x|<0.5 */
|
||||
if(ix < 0x3e400000) { /* if |x| < 2**-27 */
|
||||
if(hugev + x > one) return x; /* return x with inexact if x!=0*/
|
||||
} else
|
||||
t = x * x;
|
||||
p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
|
||||
q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
|
||||
w = p / q;
|
||||
return x + x * w;
|
||||
}
|
||||
/* 1> |x|>= 0.5 */
|
||||
w = one - fabs(x);
|
||||
t = w * 0.5;
|
||||
p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
|
||||
q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
|
||||
s = sqrt(t);
|
||||
if(ix >= 0x3FEF3333) { /* if |x| > 0.975 */
|
||||
w = p / q;
|
||||
t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
|
||||
} else {
|
||||
w = s;
|
||||
__LO(w) = 0;
|
||||
c = (t - w * w) / (s + w);
|
||||
r = p / q;
|
||||
p = 2.0 * s * r - (pio2_lo - 2.0 * c);
|
||||
q = pio4_hi - 2.0 * w;
|
||||
t = pio4_hi - (p - q);
|
||||
}
|
||||
if(hx > 0) return t;
|
||||
else
|
||||
return -t;
|
||||
}
|
||||
Reference in New Issue
Block a user