mirror of
https://gitea.nishi.boats/pyrite-dev/milsko
synced 2026-01-05 09:00:54 +00:00
add fdlibm
git-svn-id: http://svn2.nishi.boats/svn/milsko/trunk@557 b9cfdab3-6d41-4d17-bbe4-086880011989
This commit is contained in:
283
external/fdlibm/e_jn.c
vendored
Normal file
283
external/fdlibm/e_jn.c
vendored
Normal file
@@ -0,0 +1,283 @@
|
||||
|
||||
/* @(#)e_jn.c 1.4 95/01/18 */
|
||||
/*
|
||||
* ====================================================
|
||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||||
*
|
||||
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
||||
/*
|
||||
* __fdlibm_jn(n, x), __fdlibm_yn(n, x)
|
||||
* floating point Bessel's function of the 1st and 2nd kind
|
||||
* of order n
|
||||
*
|
||||
* Special cases:
|
||||
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
||||
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
||||
* Note 2. About jn(n,x), yn(n,x)
|
||||
* For n=0, j0(x) is called,
|
||||
* for n=1, j1(x) is called,
|
||||
* for n<x, forward recursion us used starting
|
||||
* from values of j0(x) and j1(x).
|
||||
* for n>x, a continued fraction approximation to
|
||||
* j(n,x)/j(n-1,x) is evaluated and then backward
|
||||
* recursion is used starting from a supposed value
|
||||
* for j(n,x). The resulting value of j(0,x) is
|
||||
* compared with the actual value to correct the
|
||||
* supposed value of j(n,x).
|
||||
*
|
||||
* yn(n,x) is similar in all respects, except
|
||||
* that forward recursion is used for all
|
||||
* values of n>1.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "math.h"
|
||||
|
||||
static const double
|
||||
invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
||||
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
||||
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
|
||||
|
||||
static double zero = 0.00000000000000000000e+00;
|
||||
|
||||
double __fdlibm_jn(int n, double x) {
|
||||
int i, hx, ix, lx, sgn;
|
||||
double a, b, temp, di;
|
||||
double z, w;
|
||||
|
||||
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
||||
* Thus, J(-n,x) = J(n,-x)
|
||||
*/
|
||||
hx = __HI(x);
|
||||
ix = 0x7fffffff & hx;
|
||||
lx = __LO(x);
|
||||
/* if J(n,NaN) is NaN */
|
||||
if((ix | ((unsigned)(lx | -lx)) >> 31) > 0x7ff00000) return x + x;
|
||||
if(n < 0) {
|
||||
n = -n;
|
||||
x = -x;
|
||||
hx ^= 0x80000000;
|
||||
}
|
||||
if(n == 0) return (__fdlibm_j0(x));
|
||||
if(n == 1) return (__fdlibm_j1(x));
|
||||
sgn = (n & 1) & (hx >> 31); /* even n -- 0, odd n -- sign(x) */
|
||||
x = fabs(x);
|
||||
if((ix | lx) == 0 || ix >= 0x7ff00000) /* if x is 0 or inf */
|
||||
b = zero;
|
||||
else if((double)n <= x) {
|
||||
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
||||
if(ix >= 0x52D00000) { /* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
switch(n & 3) {
|
||||
case 0:
|
||||
temp = cos(x) + sin(x);
|
||||
break;
|
||||
case 1:
|
||||
temp = -cos(x) + sin(x);
|
||||
break;
|
||||
case 2:
|
||||
temp = -cos(x) - sin(x);
|
||||
break;
|
||||
case 3:
|
||||
temp = cos(x) - sin(x);
|
||||
break;
|
||||
}
|
||||
b = invsqrtpi * temp / sqrt(x);
|
||||
} else {
|
||||
a = __fdlibm_j0(x);
|
||||
b = __fdlibm_j1(x);
|
||||
for(i = 1; i < n; i++) {
|
||||
temp = b;
|
||||
b = b * ((double)(i + i) / x) - a; /* avoid underflow */
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if(ix < 0x3e100000) { /* x < 2**-29 */
|
||||
/* x is tinyv, return the first Taylor expansion of J(n,x)
|
||||
* J(n,x) = 1/n!*(x/2)^n - ...
|
||||
*/
|
||||
if(n > 33) /* underflow */
|
||||
b = zero;
|
||||
else {
|
||||
temp = x * 0.5;
|
||||
b = temp;
|
||||
for(a = one, i = 2; i <= n; i++) {
|
||||
a *= (double)i; /* a = n! */
|
||||
b *= temp; /* b = (x/2)^n */
|
||||
}
|
||||
b = b / a;
|
||||
}
|
||||
} else {
|
||||
/* use backward recurrence */
|
||||
/* x x^2 x^2
|
||||
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
||||
* 2n - 2(n+1) - 2(n+2)
|
||||
*
|
||||
* 1 1 1
|
||||
* (for large x) = ---- ------ ------ .....
|
||||
* 2n 2(n+1) 2(n+2)
|
||||
* -- - ------ - ------ -
|
||||
* x x x
|
||||
*
|
||||
* Let w = 2n/x and h=2/x, then the above quotient
|
||||
* is equal to the continued fraction:
|
||||
* 1
|
||||
* = -----------------------
|
||||
* 1
|
||||
* w - -----------------
|
||||
* 1
|
||||
* w+h - ---------
|
||||
* w+2h - ...
|
||||
*
|
||||
* To determine how many terms needed, let
|
||||
* Q(0) = w, Q(1) = w(w+h) - 1,
|
||||
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
||||
* When Q(k) > 1e4 good for single
|
||||
* When Q(k) > 1e9 good for double
|
||||
* When Q(k) > 1e17 good for quadruple
|
||||
*/
|
||||
/* determine k */
|
||||
double t, v;
|
||||
double q0, q1, h, tmp;
|
||||
int k, m;
|
||||
w = (n + n) / (double)x;
|
||||
h = 2.0 / (double)x;
|
||||
q0 = w;
|
||||
z = w + h;
|
||||
q1 = w * z - 1.0;
|
||||
k = 1;
|
||||
while(q1 < 1.0e9) {
|
||||
k += 1;
|
||||
z += h;
|
||||
tmp = z * q1 - q0;
|
||||
q0 = q1;
|
||||
q1 = tmp;
|
||||
}
|
||||
m = n + n;
|
||||
for(t = zero, i = 2 * (n + k); i >= m; i -= 2) t = one / (i / x - t);
|
||||
a = t;
|
||||
b = one;
|
||||
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
||||
* Hence, if n*(log(2n/x)) > ...
|
||||
* single 8.8722839355e+01
|
||||
* double 7.09782712893383973096e+02
|
||||
* long double 1.1356523406294143949491931077970765006170e+04
|
||||
* then recurrent value may overflow and the result is
|
||||
* likely underflow to zero
|
||||
*/
|
||||
tmp = n;
|
||||
v = two / x;
|
||||
tmp = tmp * __fdlibm_log(fabs(v * tmp));
|
||||
if(tmp < 7.09782712893383973096e+02) {
|
||||
for(i = n - 1, di = (double)(i + i); i > 0; i--) {
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
}
|
||||
} else {
|
||||
for(i = n - 1, di = (double)(i + i); i > 0; i--) {
|
||||
temp = b;
|
||||
b *= di;
|
||||
b = b / x - a;
|
||||
a = temp;
|
||||
di -= two;
|
||||
/* scale b to avoid spurious overflow */
|
||||
if(b > 1e100) {
|
||||
a /= b;
|
||||
t /= b;
|
||||
b = one;
|
||||
}
|
||||
}
|
||||
}
|
||||
b = (t * __fdlibm_j0(x) / b);
|
||||
}
|
||||
}
|
||||
if(sgn == 1) return -b;
|
||||
else
|
||||
return b;
|
||||
}
|
||||
|
||||
double __fdlibm_yn(int n, double x) {
|
||||
int i, hx, ix, lx;
|
||||
int sign;
|
||||
double a, b, temp;
|
||||
|
||||
hx = __HI(x);
|
||||
ix = 0x7fffffff & hx;
|
||||
lx = __LO(x);
|
||||
/* if Y(n,NaN) is NaN */
|
||||
if((ix | ((unsigned)(lx | -lx)) >> 31) > 0x7ff00000) return x + x;
|
||||
if((ix | lx) == 0) return -one / zero;
|
||||
if(hx < 0) return zero / zero;
|
||||
sign = 1;
|
||||
if(n < 0) {
|
||||
n = -n;
|
||||
sign = 1 - ((n & 1) << 1);
|
||||
}
|
||||
if(n == 0) return (__fdlibm_y0(x));
|
||||
if(n == 1) return (sign * __fdlibm_y1(x));
|
||||
if(ix == 0x7ff00000) return zero;
|
||||
if(ix >= 0x52D00000) { /* x > 2**302 */
|
||||
/* (x >> n**2)
|
||||
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
||||
* Let s=sin(x), c=cos(x),
|
||||
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
||||
*
|
||||
* n sin(xn)*sqt2 cos(xn)*sqt2
|
||||
* ----------------------------------
|
||||
* 0 s-c c+s
|
||||
* 1 -s-c -c+s
|
||||
* 2 -s+c -c-s
|
||||
* 3 s+c c-s
|
||||
*/
|
||||
switch(n & 3) {
|
||||
case 0:
|
||||
temp = sin(x) - cos(x);
|
||||
break;
|
||||
case 1:
|
||||
temp = -sin(x) - cos(x);
|
||||
break;
|
||||
case 2:
|
||||
temp = -sin(x) + cos(x);
|
||||
break;
|
||||
case 3:
|
||||
temp = sin(x) + cos(x);
|
||||
break;
|
||||
}
|
||||
b = invsqrtpi * temp / sqrt(x);
|
||||
} else {
|
||||
a = __fdlibm_y0(x);
|
||||
b = __fdlibm_y1(x);
|
||||
/* quit if b is -inf */
|
||||
for(i = 1; i < n && (__HI(b) != 0xfff00000); i++) {
|
||||
temp = b;
|
||||
b = ((double)(i + i) / x) * b - a;
|
||||
a = temp;
|
||||
}
|
||||
}
|
||||
if(sign > 0) return b;
|
||||
else
|
||||
return -b;
|
||||
}
|
||||
Reference in New Issue
Block a user