/* @(#)s_tanh.c 1.3 95/01/18 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* Tanh(x) * Return the Hyperbolic Tangent of x * * Method : * x -x * e - e * 0. tanh(x) is defined to be ----------- * x -x * e + e * 1. reduce x to non-negative by tanh(-x) = -tanh(x). * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x) * -t * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) * t + 2 * 2 * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) * t + 2 * 22.0 < x <= INF : tanh(x) := 1. * * Special cases: * tanh(NaN) is NaN; * only tanh(0)=0 is exact for finite argument. */ #include "math.h" static const double one = 1.0, two = 2.0, tinyv = 1.0e-300; double tanh(double x) { double t, z; int jx, ix; /* High word of |x|. */ jx = __HI(x); ix = jx & 0x7fffffff; /* x is INF or NaN */ if(ix >= 0x7ff00000) { if(jx >= 0) return one / x + one; /* tanh(+-inf)=+-1 */ else return one / x - one; /* tanh(NaN) = NaN */ } /* |x| < 22 */ if(ix < 0x40360000) { /* |x|<22 */ if(ix < 0x3c800000) /* |x|<2**-55 */ return x * (one + x); /* tanh(small) = small */ if(ix >= 0x3ff00000) { /* |x|>=1 */ t = expm1(two * fabs(x)); z = one - two / (t + two); } else { t = expm1(-two * fabs(x)); z = -t / (t + two); } /* |x| > 22, return +-1 */ } else { z = one - tinyv; /* raised inexact flag */ } return (jx >= 0) ? z : -z; }